1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Add a short analysis description here
class ALEPH_1995_I398426 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ALEPH_1995_I398426);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// // Initialise and register projections
declare(ChargedFinalState(), "FS");
declare(UnstableParticles(), "UFS");
// Book histograms
book(_h_ctheta1, 3,1,1);
book(_h_ctheta2, "/TMP/ctheta",20,-1.,1.);
book(_c_hadron , "/TMP/chadron");
book(_c_bStar , "/TMP/cbStar ");
book(_c_B , "/TMP/cB ");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// First, veto on leptonic events by requiring at least 4 charged FS particles
const FinalState& fs = apply<FinalState>(event, "FS");
const size_t numParticles = fs.particles().size();
// Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
if (numParticles < 2) {
MSG_DEBUG("Failed leptonic event cut");
vetoEvent;
}
MSG_DEBUG("Passed leptonic event cut");
_c_hadron->fill();
// loop over the particles
for(const Particle& p : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==513 or Cuts::abspid==523 or
Cuts::abspid==511 or Cuts::abspid==521)) {
int sign = p.pid()/p.abspid();
// count number of Bs not from mixing or B*
if(p.abspid()==511 || p.abspid()==521) {
if(p.parents()[0].abspid()==p.abspid()) continue;
if(p.parents()[0].abspid()==513 || p.parents()[0].abspid()==523) continue;
_c_B->fill();
}
// B*
else {
_c_bStar->fill();
Particle decay;
if(p.children().size()!=2) continue;
int mid = p.abspid()-2;
if(p.children()[0].pid()==sign*mid &&
p.children()[1].pid()==22) {
decay = p.children()[1];
}
else if(p.children()[1].pid()==sign*mid &&
p.children()[0].pid()==22) {
decay = p.children()[0];
}
else
continue;
LorentzTransform boost = LorentzTransform::mkFrameTransformFromBeta(p.momentum().betaVec());
Vector3 e1z = p.p3().unit();
FourMomentum pp = boost.transform(decay.momentum());
Vector3 axis1 = boost.transform(decay.momentum()).p3().unit();
double ctheta = e1z.dot(axis1);
_h_ctheta1->fill(ctheta);
_h_ctheta2->fill(ctheta);
}
}
}
pair<double,double> calcRho(Histo1DPtr hist) {
if(hist->numEntries()==0.) return make_pair(0.,0.);
double sum1(0.),sum2(0.);
for (auto bin : hist->bins() ) {
double Oi = bin.area();
if(Oi==0.) continue;
double ai = 0.125*( -bin.xMin()*(3.+sqr(bin.xMin())) + bin.xMax()*(3.+sqr(bin.xMax())));
double bi = 0.375*( -bin.xMin()*(1.-sqr(bin.xMin())) + bin.xMax()*(1.-sqr(bin.xMax())));
double Ei = bin.areaErr();
sum1 += sqr(bi/Ei);
sum2 += bi/sqr(Ei)*(Oi-ai);
}
return make_pair(sum2/sum1,sqrt(1./sum1));
}
/// Normalise histograms etc., after the run
void finalize() {
// polarization
scale(_h_ctheta1,1./_c_hadron->val());
normalize(_h_ctheta2);
pair<double,double> rho = calcRho(_h_ctheta2);
Scatter2DPtr h_rho;
book(h_rho,2,1,1);
h_rho->addPoint(0.5, rho.first, make_pair(0.5,0.5),
make_pair(rho.second,rho.second) );
Scatter2DPtr h1;
book(h1,1,1,1);
Counter ctemp = *_c_bStar+*_c_B;
// no of B*/B+B*
double val = _c_bStar->val()/ctemp.val();
double err = val*sqrt(sqr(_c_bStar->err()/_c_bStar->val())+sqr(ctemp.err()/ctemp.val()));
h1->addPoint(0.5,val,make_pair(0.5,0.5),make_pair(err,err) );
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_ctheta1, _h_ctheta2;
CounterPtr _c_hadron,_c_bStar,_c_B;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(ALEPH_1995_I398426);
}
|