1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
class ALICE_2010_S8706239 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ALICE_2010_S8706239);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
ChargedFinalState cfs((Cuts::etaIn(-0.8, 0.8) && Cuts::pT >= 0.15));
declare(cfs, "CFS");
book(_h_pT, 4, 1, 1);
book(_h_pT_Nch_015, 11, 1, 1);
book(_h_pT_Nch_05, 12, 1, 1);
book(_Nevt_after_cuts,"Nevt_after_cuts");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const ChargedFinalState& charged = apply<ChargedFinalState>(event, "CFS");
_Nevt_after_cuts->fill();
// Get number of particles that fulfill certain pT requirements
int Nch_015 = 0;
int Nch_05 = 0;
for (const Particle& p : charged.particles()) {
double pT = p.pT()/GeV;
if (pT < 4.0) Nch_015++;
if (pT > 0.5 && pT < 4.0) Nch_05++;
}
// Now we can fill histograms
for (const Particle& p : charged.particles()) {
double pT = p.pT()/GeV;
if (pT < 4.0) _h_pT_Nch_015 ->fill(Nch_015, pT);
if (pT > 0.5 && pT < 4.0) _h_pT_Nch_05 ->fill(Nch_05, pT);
// To get the Yield, fill appropriate weight 1/(2PI * pT * d eta)
_h_pT->fill(pT, 1.0 /(TWOPI*pT*1.6) );
}
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h_pT, 1.0/ *_Nevt_after_cuts);
}
/// @}
private:
/// @name Histograms
/// @{
Histo1DPtr _h_pT;
Profile1DPtr _h_pT_Nch_015;
Profile1DPtr _h_pT_Nch_05;
CounterPtr _Nevt_after_cuts;
/// @}
};
RIVET_DECLARE_ALIASED_PLUGIN(ALICE_2010_S8706239, ALICE_2010_I860416);
}
|