1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/SingleValueProjection.hh"
#include "Rivet/Tools/AliceCommon.hh"
#include "Rivet/Projections/AliceCommon.hh"
namespace Rivet {
/// ALICE PbPb at 2.76 TeV azimuthal di-hadron correlations
class ALICE_2012_I930312 : public Analysis {
public:
// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ALICE_2012_I930312);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Declare centrality projection
declareCentrality(ALICE::V0MMultiplicity(), "ALICE_2015_PBPBCentrality", "V0M", "V0M");
// Projection for trigger particles: charged, primary particles
// with |eta| < 1.0 and 8 < pT < 15 GeV/c
declare(ALICE::PrimaryParticles(Cuts::abseta < 1.0 && Cuts::abscharge > 0
&& Cuts::ptIn(8.*GeV, 15.*GeV)), "APRIMTrig");
// pT bins edges
vector<double> ptBins = { 3., 4., 6., 8., 10. };
// Projections for associated particles: charged, primary particles
// with |eta| < 1.0 and different pT bins
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
Cut cut = Cuts::abseta < 1.0 && Cuts::abscharge > 0 &&
Cuts::ptIn(ptBins[ipt]*GeV, ptBins[ipt+1]*GeV);
declare(ALICE::PrimaryParticles(cut), "APRIMAssoc" + toString(ipt));
}
// Create event strings
vector<string> evString = { "pp", "central", "peripheral" };
// Initialize trigger counters and yield histograms
string title = "Per trigger particle yield";
string xtitle = "$\\Delta\\eta$ (rad)";
string ytitle = "$1 / N_{trig} {\\rm d}N_{assoc} / {\\rm d}\\Delta\\eta$ (rad$^-1$)";
string hYieldName[EVENT_TYPES][PT_BINS];
for (int itype = 0; itype < EVENT_TYPES; ++itype) {
book(_counterTrigger[itype], "counter." + toString(itype));
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
hYieldName[itype][ipt]= "yield." + evString[itype] + ".pt" + toString(ipt);
book(_histYield[itype][ipt], hYieldName[itype][ipt], 36, -0.5*M_PI, 1.5*M_PI);
}
}
// Find out the beam type, also specified from option.
string beamOpt = getOption<string>("beam","NONE");
if (beamOpt != "NONE") {
MSG_WARNING("You are using a specified beam type, instead of using what"
"is provided by the generator. "
"Only do this if you are completely sure what you are doing.");
if (beamOpt=="PP") isHI = false;
else if (beamOpt=="HI") isHI = true;
else {
MSG_ERROR("Beam option error. You have specified an unsupported beam.");
return;
}
}
else {
const ParticlePair& beam = beams();
if (beam.first.pid() == PID::PROTON && beam.second.pid() == PID::PROTON) isHI = false;
else if (beam.first.pid() == PID::LEAD && beam.second.pid() == PID::LEAD)
isHI = true;
else {
MSG_WARNING("Beam unspecified. Assuming you are running rivet-merge.");
}
}
// Initialize IAA and ICP histograms
book(_histIAA[0], 1, 1, 1);
book(_histIAA[1], 2, 1, 1);
book(_histIAA[2], 5, 1, 1);
book(_histIAA[3], 3, 1, 1);
book(_histIAA[4], 4, 1, 1);
book(_histIAA[5], 6, 1, 1);
// Initialize background-subtracted yield histograms
for (int itype = 0; itype < EVENT_TYPES; ++itype) {
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
book(_histYieldNoBkg[itype][ipt], hYieldName[itype][ipt] + ".nobkg", 36, -0.5*M_PI, 1.5*M_PI);
}
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Trigger particles
Particles trigParticles =
applyProjection<ALICE::PrimaryParticles>(event,"APRIMTrig").particles();
// Associated particles
Particles assocParticles[PT_BINS];
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
string pname = "APRIMAssoc" + toString(ipt);
assocParticles[ipt] =
applyProjection<ALICE::PrimaryParticles>(event,pname).particles();
}
// Check type of event. This may not be a perfect way to check for the
// type of event as there might be some weird conditions hidden inside.
// For example some HepMC versions check if number of hard collisions
// is equal to 0 and assign 'false' in that case, which is usually wrong.
// This might be changed in the future
int ev_type = 0; // pp
if ( isHI ) {
// Prepare centrality projection and value
const CentralityProjection& centrProj =
apply<CentralityProjection>(event, "V0M");
double centr = centrProj();
// Set the flag for the type of the event
if (centr > 0.0 && centr < 5.0)
ev_type = 1; // PbPb, central
else if (centr > 60.0 && centr < 90.0)
ev_type = 2; // PbPb, peripherial
else
vetoEvent; // PbPb, other, this is not used in the analysis at all
}
// Fill trigger histogram for a proper event type
_counterTrigger[ev_type]->fill(trigParticles.size());
// Loop over trigger particles
for (const Particle& trigParticle : trigParticles) {
// For each pt bin
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
// Loop over associated particles
for (const Particle& assocParticle : assocParticles[ipt]) {
// If associated and trigger particle are not the same particles.
if (!isSame(trigParticle, assocParticle)) {
// Test trigger particle.
if (trigParticle.pt() > assocParticle.pt()) {
// Calculate delta phi in range (-0.5*PI, 1.5*PI).
double dPhi = deltaPhi(trigParticle, assocParticle, true);
if (dPhi < -0.5 * M_PI) dPhi += 2 * M_PI;
// Fill yield histogram for calculated delta phi
_histYield[ev_type][ipt]->fill(dPhi);
}
}
}
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
// Check for the reentrant finalize
bool pp_available = false, PbPb_available = false;
for (int itype = 0; itype < EVENT_TYPES; ++itype) {
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
if (_histYield[itype][ipt]->numEntries() > 0)
itype == 0 ? pp_available = true : PbPb_available = true;
}
}
// Skip postprocessing if pp or PbPb histograms are not available
if (!(pp_available && PbPb_available))
return;
// Variable for near and away side peak integral calculation
double integral[EVENT_TYPES][PT_BINS][2] = { { {0.0} } };
// Variables for background calculation
double bkg = 0.0;
double bkgErr[EVENT_TYPES][PT_BINS] = { {0.0} };
// Variables for integration error calculation
double norm[EVENT_TYPES] = {0.0};
double numEntries[EVENT_TYPES][PT_BINS][2] = { { {0.0} } };
int numBins[EVENT_TYPES][PT_BINS][2] = { { {0} } };
// For each event type
for (int itype = 0; itype < EVENT_TYPES; ++itype) {
// Get counter
CounterPtr counter = _counterTrigger[itype];
// For each pT range
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
// Get yield histograms
Histo1DPtr hYield = _histYield[itype][ipt];
Histo1DPtr hYieldNoBkg = _histYieldNoBkg[itype][ipt];
// Check if histograms are fine
if (counter->sumW() == 0 || hYield->numEntries() == 0) {
MSG_WARNING("There are no entries in one of the histograms");
continue;
}
// Scale yield histogram
norm[itype] = 1. / counter->sumW();
scale(hYield, norm[itype]);
// Calculate background
double sum = 0.0;
int nbins = 0;
for (size_t ibin = 0; ibin < hYield->numBins(); ++ibin) {
double xmid = hYield->bin(ibin).xMid();
if (inRange(xmid, -0.5 * M_PI, -0.5 * M_PI + 0.4) ||
inRange(xmid, 0.5 * M_PI - 0.4, 0.5 * M_PI + 0.4) ||
inRange(xmid, 1.5 * M_PI - 0.4, 1.5 * M_PI)) {
sum += hYield->bin(ibin).sumW();
nbins += 1;
}
}
if (nbins == 0) {
MSG_WARNING("Failed to estimate background!");
continue;
}
bkg = sum / nbins;
// Calculate background error
sum = 0.0;
nbins = 0;
for (size_t ibin = 0; ibin < hYield->numBins(); ++ibin) {
double xmid = hYield->bin(ibin).xMid();
if (inRange(xmid, 0.5 * M_PI - 0.4, 0.5 * M_PI + 0.4)) {
sum += (hYield->bin(ibin).sumW() - bkg) *
(hYield->bin(ibin).sumW() - bkg);
nbins++;
}
}
if (nbins < 2) {
MSG_WARNING("Failed to estimate background error!");
continue;
}
bkgErr[itype][ipt] = sqrt(sum / (nbins - 1));
// Fill histograms with removed background
for (size_t ibin = 0; ibin < hYield->numBins(); ++ibin) {
hYieldNoBkg->fillBin(ibin, hYield->bin(ibin).sumW() - bkg);
}
// Integrate near-side yield
size_t lowerBin = hYield->binIndexAt(-0.7 + 0.02);
size_t upperBin = hYield->binIndexAt( 0.7 - 0.02) + 1;
nbins = upperBin - lowerBin;
numBins[itype][ipt][NEAR] = nbins;
integral[itype][ipt][NEAR] =
hYield->integralRange(lowerBin, upperBin) - nbins * bkg;
numEntries[itype][ipt][NEAR] =
hYield->integralRange(lowerBin, upperBin) * counter->sumW();
// Integrate away-side yield
lowerBin = hYield->binIndexAt(M_PI - 0.7 + 0.02);
upperBin = hYield->binIndexAt(M_PI + 0.7 - 0.02) + 1;
nbins = upperBin - lowerBin;
numBins[itype][ipt][AWAY] = nbins;
integral[itype][ipt][AWAY] =
hYield->integralRange(lowerBin, upperBin) - nbins * bkg;
numEntries[itype][ipt][AWAY] =
hYield->integralRange(lowerBin, upperBin) * counter->sumW();
}
}
// Variables for IAA/ICP plots
double yval[2] = { 0.0, 0.0 };
double yerr[2] = { 0.0, 0.0 };
double xval[PT_BINS] = { 3.5, 5.0, 7.0, 9.0 };
double xerr[PT_BINS] = { 0.5, 1.0, 1.0, 1.0 };
int types1[3] = {1, 2, 1};
int types2[3] = {0, 0, 2};
// Fill IAA/ICP plots for near and away side peak
for (int ihist = 0; ihist < 3; ++ihist) {
int type1 = types1[ihist];
int type2 = types2[ihist];
double norm1 = norm[type1];
double norm2 = norm[type2];
for (int ipt = 0; ipt < PT_BINS; ++ipt) {
double bkgErr1 = bkgErr[type1][ipt];
double bkgErr2 = bkgErr[type2][ipt];
for (int ina = 0; ina < 2; ++ina) {
double integ1 = integral[type1][ipt][ina];
double integ2 = integral[type2][ipt][ina];
double numEntries1 = numEntries[type1][ipt][ina];
double numEntries2 = numEntries[type2][ipt][ina];
double numBins1 = numBins[type1][ipt][ina];
double numBins2 = numBins[type2][ipt][ina];
yval[ina] = integ1 / integ2;
yerr[ina] = norm1 * norm1 * numEntries1 +
norm2 * norm2 * numEntries2 * integ1 * integ1 / (integ2 * integ2) +
numBins1 * numBins1 * bkgErr1 * bkgErr1 +
numBins2 * numBins2 * bkgErr2 * bkgErr2 * integ1 * integ1 / (integ2 * integ2);
yerr[ina] = sqrt(yerr[ina])/integ2;
}
_histIAA[ihist]->addPoint(xval[ipt], yval[NEAR], xerr[ipt], yerr[NEAR]);
_histIAA[ihist + 3]->addPoint(xval[ipt], yval[AWAY], xerr[ipt], yerr[AWAY]);
}
}
}
//@}
private:
bool isHI;
static const int PT_BINS = 4;
static const int EVENT_TYPES = 3;
static const int NEAR = 0;
static const int AWAY = 1;
/// @name Histograms
//@{
Histo1DPtr _histYield[EVENT_TYPES][PT_BINS];
Histo1DPtr _histYieldNoBkg[EVENT_TYPES][PT_BINS];
CounterPtr _counterTrigger[EVENT_TYPES];
Scatter2DPtr _histIAA[6];
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(ALICE_2012_I930312);
}
|