Rivet Analyses Reference

ALICE_2016_I1471838

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions.
Experiment: ALICE (LHC)
Inspire ID: 1471838
Status: UNVALIDATED
Authors:
  • Christian Bierlich
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • Minimum bias pp

Measurements of pT spectra and yields of (multi)strange hadrons, as well as protons and pions (yields only) in forward multiplicity classes at 7 TeV. Ratios of yields to pion yields are constructed. The analysis takes care of particle reconstruction as the experiment does, so no finite lifetime should be imposed on generator level. Experimental results are scaled to inelastic cross section, and generator setup should be adjusted accordingly.

Source code: ALICE_2016_I1471838.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/CentralityProjection.hh"
#include "Rivet/Projections/AliceCommon.hh"
#include "Rivet/Tools/AliceCommon.hh"

namespace Rivet {


  /// @brief Strangeness enhancement in pp 7 TeV by ALICE.
  class ALICE_2016_I1471838 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ALICE_2016_I1471838);

    int profileIndex(vector<double> cBins, double c) {
      int index = 100;
      if (c > 0 && c <= cBins[0]) return cBins.size() - 1;
      for (size_t i = 0; i < cBins.size() - 1; ++i) {
        if (c > cBins[i] && c <= cBins[i + 1]) {
	  index = i;
	  break;
	}
      }
      return max(0, int(cBins.size() - index - 2));
    }

    /// Book histograms and initialise projections before the run
    void init() {
      // Centrality projection.
      declareCentrality(ALICE::V0MMultiplicity(),
        "ALICE_2015_PPCentrality","V0M","V0M");
      // Central primary particles
      declare(ChargedFinalState(Cuts::abseta < 1.0),"PP");
      declare(ALICE::PrimaryParticles(Cuts::absrap < 0.5),"PPy");
      centralityBins = {1.,5.,10.,15.,20., 30., 40., 50., 70., 100.};
      centralityBinsOmega = {5.,15.,30.,50.,100.};
      // Book histograms
      for (int i = 0; i < 10; ++i) {
        book(K0SpT[centralityBins[i]], i+1,1,1);
        book(LambdapT[centralityBins[i]], i+11,1,1);
        book(XipT[centralityBins[i]], i+21,1,1);
        book(sow[centralityBins[i]], "sow_" + toString(i));
      }
      for (int i = 0; i < 5; ++i) {
        book(OmegapT[centralityBinsOmega[i]], i+31,1,1);
        book(sowOmega[centralityBinsOmega[i]], "sowO_" + toString(i));
      }
      book(piYield, 40,1,1);
      book(pYield, 41,1,1);
      book(kYield, 42,1,1);
      book(lambdaYield, 43,1,1);
      book(xiYield, 44,1,1);
      book(omegaYield, 45,1,1);
      book(piRebinned, "/piRebinned", refData(45,1,1));

      // Make the ratios
      book(kpi, 36, 1, 1, true);
      book(ppi, 47, 1, 1, true);
      book(lpi, 37, 1, 1, true);
      book(xpi, 38, 1, 1, true);
      book(opi, 39, 1, 1, true);
      book(lk, 46, 1, 1, true);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      if (apply<ChargedFinalState>(event,"PP").particles().size() < 1) vetoEvent;
      const ALICE::PrimaryParticles& prim = apply<ALICE::PrimaryParticles>(event,"PPy");
      const CentralityProjection& cent = apply<CentralityProjection>(event,"V0M");
      double c  = cent();
      // Find the correct histograms
      auto kptItr = K0SpT.upper_bound(c);
      if (kptItr == K0SpT.end()) return;
      auto lptItr = LambdapT.upper_bound(c);
      if (lptItr == LambdapT.end()) return;
      auto xptItr = XipT.upper_bound(c);
      if (xptItr == XipT.end()) return;
      auto optItr = OmegapT.upper_bound(c);
      if (optItr == OmegapT.end()) return;
      // Fill the sow.
      auto sowItr = sow.upper_bound(c);
      if (sowItr == sow.end()) return;
      auto sowOmegaItr = sowOmega.upper_bound(c);
      if (sowOmegaItr == sowOmega.end()) return;
      sowItr->second->fill();
      sowOmegaItr->second->fill();
      // Fill the pt histograms and count yields.
      int npi = 0, npr = 0, nk = 0;
      int nla = 0, nxi = 0, nom = 0;
      for (auto p : prim.particles()) {
        const double pT = p.pT();
	const int pid = abs(p.pid());
	if (pid == 211) ++npi;
	else if (pid == 2212) ++npr;
	else if (pid == 310) {
	  kptItr->second->fill(pT);
	  ++nk;
	}
	else if (pid == 3122) {
	  lptItr->second->fill(pT);
	  ++nla;
	}
	else if (pid == 3312) {
	  xptItr->second->fill(pT);
	  ++nxi;
	}
	else if (pid == 3334) {
	  optItr->second->fill(pT);
	  ++nom;
	}
      }
      // Fill the profiles of yields.
      int index = profileIndex(centralityBins,c);
      piYield->fillBin(index, double(npi));
      pYield->fillBin(index, double(npr));
      kYield->fillBin(index, double(nk));
      lambdaYield->fillBin(index, double(nla));
      xiYield->fillBin(index, double(nxi));
      index = profileIndex(centralityBinsOmega, c);
      omegaYield->fillBin(index, double(nom));
      piRebinned->fillBin(index,double(npi));
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      // Normalize the spectra
      for (int i = 0; i < 10; ++i) {
        K0SpT[centralityBins[i]]->scaleW(1./sow[centralityBins[i]]->sumW());
        XipT[centralityBins[i]]->scaleW(1./sow[centralityBins[i]]->sumW());
        LambdapT[centralityBins[i]]->scaleW(1./sow[centralityBins[i]]->sumW());
      }
      for (int i = 0; i < 5; ++i) {
        OmegapT[centralityBinsOmega[i]]->scaleW(1./sowOmega[centralityBinsOmega[i]]->sumW());
      }

      divide(kYield, piYield, kpi);
      kpi->scaleY(2.);
      divide(pYield, piYield, ppi);
      divide(lambdaYield, piYield, lpi);
      divide(xiYield, piYield, xpi);
      divide(omegaYield, piRebinned, opi);
      divide(lambdaYield, kYield, lk);
      lk->scaleY(0.5);
    }

    //@}


    /// @name Histograms
    //@{
    // Histograms ordered in centrality classes
    vector<double> centralityBins;
    vector<double> centralityBinsOmega;

    // pT spectra
    map<double, Histo1DPtr> K0SpT;
    map<double, Histo1DPtr> LambdapT;
    map<double, Histo1DPtr> XipT;
    map<double, Histo1DPtr> OmegapT;
    map<double, CounterPtr> sow;
    map<double, CounterPtr> sowOmega;

    // Total yields
    Profile1DPtr piYield;
    Profile1DPtr pYield;
    Profile1DPtr kYield;
    Profile1DPtr lambdaYield;
    Profile1DPtr xiYield;
    Profile1DPtr omegaYield;
    Profile1DPtr piRebinned;

    // Ratios
    Scatter2DPtr kpi;
    Scatter2DPtr ppi;
    Scatter2DPtr lpi;
    Scatter2DPtr xpi;
    Scatter2DPtr opi;
    Scatter2DPtr lk;
    //@}
  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ALICE_2016_I1471838);


}