Rivet Analyses Reference

ARGUS_1992_I319102

Measurement of $R$ at 9.36 GeV and charged particle multiplicities in continuum and at the $\Upsilon(4S)$
Experiment: ARGUS (DORIS)
Inspire ID: 319102
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Z.Phys. C54 (1992) 13-20, 1992
Beams: e- e+
Beam energies: ANY
Run details:
  • e+ e- to hadrons and e+ e- to mu+ mu- (for normalization) Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Measurement of $R$ at 9.36 GeV and charged particle multiplicities in continuum and at the $\Upsilon(4S)$. The individual hadronic and muonic cross sections are also outputted to the yoda file so that ratio $R$ can be recalculated if runs are combined. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: ARGUS_1992_I319102.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief charged multiplicity at 4s and nearby continuum
  class ARGUS_1992_I319102 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ARGUS_1992_I319102);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(UnstableParticles(), "UFS");
      declare(FinalState(), "FS");

      // Book histograms
      if(isCompatibleWithSqrtS(10.47)) {
        book(_h_N, 2, 1, 1);
        book(_h_tot_N,4,1,1);
      }
      book(_h_N_Upsilon, 3, 1, 1);
      book(_h_N_tot_Upsilon,5,1,1);
      // counters for R
      book(_c_hadrons, "/TMP/sigma_hadrons");
      book(_c_muons, "/TMP/sigma_muons");
      book(_w_cont,"/TMP/w_cont");
      book(_w_ups ,"/TMP/w_ups" );
    }

    /// Recursively walk the decay tree to find decay products of @a p
    void findDecayProducts(Particle mother, unsigned int & nCharged) {
      for(const Particle & p: mother.children()) {
	if(!p.children().empty())
	  findDecayProducts(p, nCharged);
	else if(PID::isCharged(p.pid()))
	  ++nCharged;
      }
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const FinalState& fs = apply<FinalState>(event, "FS");
      // Find the Upsilons among the unstables
      const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
      Particles upsilons = ufs.particles(Cuts::pid==300553);
      // Continuum
      if (upsilons.empty()) {
	map<long,int> nCount;
	int ntotal(0);
	unsigned int nCharged(0);
	for (const Particle& p : fs.particles()) {
	  nCount[p.pid()] += 1;
	  ++ntotal;
	  if(PID::isCharged(p.pid())) ++nCharged;
	}
	// mu+mu- + photons
	if(nCount[-13]==1 and nCount[13]==1 &&
	   ntotal==2+nCount[22])
	  _c_muons->fill();
	// everything else
	else {
	  _c_hadrons->fill();
	  if(_h_N) {
	    _h_N->fill(nCharged);
	    _h_tot_N->fill(10.47,nCharged);
	    _w_cont->fill();
	  }
	}
      }
      // upsilon 4s
      else {
        for (const Particle& ups : upsilons) {
	  unsigned int nCharged(0);
	  findDecayProducts(ups,nCharged);
	  _h_N_Upsilon->fill(nCharged);
	  _h_N_tot_Upsilon->fill(10.575,nCharged);
	  _w_ups->fill();
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      Scatter1D R = *_c_hadrons/ *_c_muons;
      double              rval = R.point(0).x();
      pair<double,double> rerr = R.point(0).xErrs();
      double fact = crossSection()/ sumOfWeights() /picobarn;
      double sig_h = _c_hadrons->val()*fact;
      double err_h = _c_hadrons->err()*fact;
      double sig_m = _c_muons  ->val()*fact;
      double err_m = _c_muons  ->err()*fact;
      Scatter2D temphisto(refData(1, 1, 1));
      Scatter2DPtr hadrons;
      book(hadrons, "sigma_hadrons");
      Scatter2DPtr muons;
      book(muons, "sigma_muons"  );
      Scatter2DPtr mult;
      book(mult, 1, 1, 1);
      for (size_t b = 0; b < temphisto.numPoints(); b++) {
	const double x  = temphisto.point(b).x();
	pair<double,double> ex = temphisto.point(b).xErrs();
	pair<double,double> ex2 = ex;
	if(ex2.first ==0.) ex2. first=0.0001;
	if(ex2.second==0.) ex2.second=0.0001;
	if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
	  mult   ->addPoint(x, rval, ex, rerr);
	  hadrons->addPoint(x, sig_h, ex, make_pair(err_h,err_h));
	  muons  ->addPoint(x, sig_m, ex, make_pair(err_m,err_m));
	}
	else {
	  mult   ->addPoint(x, 0., ex, make_pair(0.,.0));
	  hadrons->addPoint(x, 0., ex, make_pair(0.,.0));
	  muons  ->addPoint(x, 0., ex, make_pair(0.,.0));
	}
      }
      if(_h_N) {
	normalize(_h_N,200.);
	if(_w_cont->val()!=0)
	  scale(_h_tot_N,1./ *_w_cont);
      }
      normalize(_h_N_Upsilon,200.);
      if(_w_ups->val()!=0)
	scale(_h_N_tot_Upsilon,1./ *_w_ups);
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_N,_h_N_Upsilon,_h_tot_N,_h_N_tot_Upsilon;
    CounterPtr _c_hadrons, _c_muons;
    CounterPtr _w_cont,_w_ups;
    //@}


  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ARGUS_1992_I319102);


}