1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Lambda_c -> Lambda pi asymmetry
class ARGUS_1992_I319105 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ARGUS_1992_I319105);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS" );
// Book histograms
book(_h_ctheta,3,1,1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// loop over Lambda_c baryons
for( const Particle& Lambdac : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4122)) {
int sign = Lambdac.pid()/4122;
if(Lambdac.children().size()!=2) continue;
Particle baryon1,meson1;
if(Lambdac.children()[0].pid()==sign*3122 &&
Lambdac.children()[1].pid()==sign*211) {
baryon1 = Lambdac.children()[0];
meson1 = Lambdac.children()[1];
}
else if(Lambdac.children()[1].pid()==sign*3122 &&
Lambdac.children()[0].pid()==sign*211) {
baryon1 = Lambdac.children()[1];
meson1 = Lambdac.children()[0];
}
else
continue;
Particle baryon2,meson2;
if(baryon1.children()[0].pid()== sign*2212 &&
baryon1.children()[1].pid()==-sign*211) {
baryon2 = baryon1.children()[0];
meson2 = baryon1.children()[1];
}
else if(baryon1.children()[1].pid()== sign*2212 &&
baryon1.children()[0].pid()==-sign*211) {
baryon2 = baryon1.children()[1];
meson2 = baryon1.children()[0];
}
else
continue;
// first boost to the Lambdac rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
// to lambda rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
Vector3 axis = pbaryon1.p3().unit();
FourMomentum pp = boost2.transform(pbaryon2);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
_h_ctheta->fill(cTheta);
}
}
pair<double,double> calcAlpha(Histo1DPtr hist) {
if(hist->numEntries()==0.) return make_pair(0.,0.);
double sum1(0.),sum2(0.);
for (auto bin : hist->bins() ) {
double Oi = bin.area();
if(Oi==0.) continue;
double ai = 0.5*(bin.xMax()-bin.xMin());
double bi = 0.5*ai*(bin.xMax()+bin.xMin());
double Ei = bin.areaErr();
sum1 += sqr(bi/Ei);
sum2 += bi/sqr(Ei)*(Oi-ai);
}
return make_pair(sum2/sum1,sqrt(1./sum1));
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_h_ctheta);
Scatter2DPtr _h_alpha;
book(_h_alpha,2,1,1);
pair<double,double> alpha = calcAlpha(_h_ctheta);
_h_alpha->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_ctheta;
//@}
};
RIVET_DECLARE_PLUGIN(ARGUS_1992_I319105);
}
|