1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/DressedLeptons.hh"
#include "Rivet/Projections/MissingMomentum.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Lambda_c -> Lambda l+ nu_l asymmetry
class ARGUS_1994_I371613 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ARGUS_1994_I371613);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS" );
// Book histograms
book(_h_Lambda, "/TMP/hLambda", 20,-1.,1.);
}
void findChildren(Particle parent, int sign, unsigned int & npart,
Particles & lambda, Particles & e, Particles & nu) {
for(const Particle & child : parent.children()) {
if(child.pid()==sign*PID::LAMBDA) {
lambda.push_back(child);
++npart;
}
else if(child.pid()==-sign*PID::EMINUS || child.pid()==-sign*PID::MUON) {
e.push_back(child);
++npart;
}
else if(child.pid()==sign*PID::NU_E || child.pid()==sign*PID::NU_MU) {
nu.push_back(child);
++npart;
}
else if(!child.children().empty()) {
findChildren(child,sign,npart,lambda,e,nu);
}
else {
++npart;
}
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// loop over Lambda_c baryons
for( const Particle& Lambdac : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4122)) {
int sign = Lambdac.pid()/4122;
Particles lambda,e,nu;
unsigned int npart(0);
findChildren(Lambdac,sign,npart,lambda,e,nu);
if(npart!=3 || lambda.size()!=1 || e.size()!=1 || nu.size()!=1) continue;
Particle baryon2;
if(lambda[0].children()[0].pid()== sign*2212 &&
lambda[0].children()[1].pid()== -sign*211) {
baryon2 = lambda[0].children()[0];
}
else if(lambda[0].children()[1].pid()== sign*2212 &&
lambda[0].children()[0].pid()== -sign*211) {
baryon2 = lambda[0].children()[1];
}
else
continue;
// mass cut
double mLL = (lambda[0].momentum()+e[0].momentum()).mass();
if(mLL<1.85 || mLL>2.2) continue;
// first boost to the Lambdac rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
FourMomentum pbaryon1 = boost1.transform(lambda[0].momentum());
FourMomentum pbaryon2 = boost1.transform(baryon2 .momentum());
// to lambda rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
Vector3 axis = pbaryon1.p3().unit();
FourMomentum pp = boost2.transform(pbaryon2);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
_h_Lambda->fill(cTheta);
}
}
pair<double,double> calcAlpha(Histo1DPtr hist) {
if(hist->numEntries()==0.) return make_pair(0.,0.);
double sum1(0.),sum2(0.);
for (auto bin : hist->bins() ) {
double Oi = bin.area();
if(Oi==0.) continue;
double ai = 0.5*(bin.xMax()-bin.xMin());
double bi = 0.5*ai*(bin.xMax()+bin.xMin());
double Ei = bin.areaErr();
sum1 += sqr(bi/Ei);
sum2 += bi/sqr(Ei)*(Oi-ai);
}
return make_pair(sum2/sum1,sqrt(1./sum1));
}
/// Normalise histograms etc., after the run
void finalize() {
// asymmetry
normalize(_h_Lambda);
Scatter2DPtr _h_alpha;
book(_h_alpha,1,1,1);
pair<double,double> alpha = calcAlpha(_h_Lambda);
_h_alpha->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_Lambda;
//@}
};
RIVET_DECLARE_PLUGIN(ARGUS_1994_I371613);
}
|