1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/LeadingParticlesFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
namespace Rivet {
class ATLAS_2010_S8914702 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2010_S8914702);
/// Book histograms and initialise projections before the run
void init() {
FinalState fs;
declare(fs, "FS");
FastJets fj(fs, FastJets::KT, 0.5);
fj.useJetArea(new fastjet::AreaDefinition(fastjet::VoronoiAreaSpec()));
declare(fj, "KtJetsD05");
LeadingParticlesFinalState photonfs(FinalState(Cuts::abseta < 1.81 && Cuts::pT > 15*GeV));
photonfs.addParticleId(PID::PHOTON);
declare(photonfs, "LeadingPhoton");
size_t hist_bin = 0;
for (size_t i = 0; i < _eta_bins.size()-1; ++i) {
if (fabs(_eta_bins[i] - 1.37) < .0001) continue;
book(_h_Et_photon[i] ,1, 1, hist_bin+1);
hist_bin += 1;
}
}
size_t getEtaBin(double eta, bool area_eta) const {
return (!area_eta) ? binIndex(fabs(eta), _eta_bins) : binIndex(fabs(eta), _eta_bins_areaoffset);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
Particles photons = apply<LeadingParticlesFinalState>(event, "LeadingPhoton").particles();
if (photons.size() != 1) vetoEvent;
const Particle& leadingPhoton = photons[0];
if (inRange(leadingPhoton.abseta(), 1.37, 1.52)) vetoEvent;
const int eta_bin = getEtaBin(leadingPhoton.abseta(), false);
const Particles& fs = apply<FinalState>(event, "FS").particles();
FourMomentum mom_in_EtCone;
for (const Particle& p : fs) {
// Check if it's in the cone of .4
if (deltaR(leadingPhoton, p) >= 0.4) continue;
// Check if it's in the 5x7 central core
if (fabs(deltaEta(leadingPhoton, p)) < .025*5.0*0.5 &&
fabs(deltaPhi(leadingPhoton, p)) < (PI/128.)*7.0*0.5) continue;
// Increment
mom_in_EtCone += p.momentum();
}
MSG_DEBUG("Done with initial Et cone");
// Get the jet pT densities
vector< vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
FastJets fastjets = apply<FastJets>(event, "KtJetsD05");
const shared_ptr<fastjet::ClusterSequenceArea> clust_seq_area = fastjets.clusterSeqArea();
for (const Jet& jet : fastjets.jets()) {
const double area = clust_seq_area->area(jet); //< Implicit call to pseudojet()
if (area > 1e-4 && jet.abseta() < _eta_bins_areaoffset.back()) {
ptDensities.at(getEtaBin(jet.abseta(), true)) += jet.pT()/area;
}
}
// Now compute the median energy densities
vector<double> ptDensity;
for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; ++b) {
ptDensity += ptDensities[b].empty() ? 0 : median(ptDensities[b]);
}
// Now figure out the correction
const double ETCONE_AREA = PI*.4*.4 - (7.0*.025)*(5.0*PI/128.);
const double correction = ptDensity[getEtaBin(leadingPhoton.abseta(), true)]*ETCONE_AREA;
MSG_DEBUG("Jet area correction done");
// Shouldn't need to subtract photon
// NB. Using expected cut at hadron/particle level, not cut at reco level
if (mom_in_EtCone.Et() - correction/*-leadingPhoton.Et()*/ > 4.0*GeV) vetoEvent;
MSG_DEBUG("Passed isolation cut");
// Fill histogram
_h_Et_photon[eta_bin]->fill(leadingPhoton.Et()/GeV);
}
/// Normalise histograms etc., after the run
void finalize() {
for (size_t i = 0; i < _eta_bins.size()-1; ++i) {
if (fabs(_eta_bins[i] - 1.37) < .0001) continue;
scale(_h_Et_photon[i], crossSection()/sumOfWeights());
}
}
private:
Histo1DPtr _h_Et_photon[6];
const vector<double> _eta_bins = {0.00, 0.60, 1.37, 1.52, 1.81};
const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0};
};
RIVET_DECLARE_ALIASED_PLUGIN(ATLAS_2010_S8914702, ATLAS_2010_I882463);
}
|