1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
/// Rivet analysis class for ATLAS 2010 minimum bias analysis
class ATLAS_2010_S8918562 : public Analysis {
public:
/// Default constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2010_S8918562);
/// Initialization, called once before running
void init() {
// Projections
const ChargedFinalState cfs100(Cuts::abseta < 2.5 && Cuts::pT > 100*MeV);
declare(cfs100, "CFS100");
const ChargedFinalState cfs500(Cuts::abseta < 2.5 && Cuts::pT > 500*MeV);
declare(cfs500, "CFS500");
const ChargedFinalState cfs2500(Cuts::abseta < 2.5 && Cuts::pT > 2500*MeV);
declare(cfs2500, "CFS2500");
// Book histograms
if (isCompatibleWithSqrtS(900)) {
book(_h["pt100_nch2_nch"], 18, 1, 1);
book(_h["pt100_nch2_pt"], 11, 1, 1);
book(_h["pt100_nch2_eta"], 4, 1, 1);
book(_p["pt100_nch2_ptnch"], 24, 1, 1);
book(_h["pt100_nch20_nch"], 34, 1, 1);
book(_h["pt100_nch20_pt"], 30, 1, 1);
book(_h["pt100_nch20_eta"], 26, 1, 1);
book(_h["pt500_nch1_nch"], 15, 1, 1);
book(_h["pt500_nch1_pt"], 8, 1, 1);
book(_h["pt500_nch1_eta"], 1, 1, 1);
book(_p["pt500_nch1_ptnch"], 22, 1, 1);
book(_h["pt500_nch6_nch"], 20, 1, 1);
book(_h["pt500_nch6_pt"], 13, 1, 1);
book(_h["pt500_nch6_eta"], 6, 1, 1);
book(_h["pt2500_nch1_nch"], 36, 1, 1);
book(_h["pt2500_nch1_pt"], 32, 1, 1);
book(_h["pt2500_nch1_eta"], 28, 1, 1);
book(_p["pt2500_nch1_ptnch"], 38, 1, 1);
} else if (isCompatibleWithSqrtS(2360)) {
book(_h["pt500_nch1_nch"], 16, 1, 1);
book(_h["pt500_nch1_pt"], 9, 1, 1);
book(_h["pt500_nch1_eta"], 2, 1, 1);
_p["pt500_nch1_ptnch"] = nullptr;
} else if (isCompatibleWithSqrtS(7000)) {
book(_h["pt100_nch2_nch"], 19, 1, 1);
book(_h["pt100_nch2_pt"], 12, 1, 1);
book(_h["pt100_nch2_eta"], 5, 1, 1);
book(_p["pt100_nch2_ptnch"], 25, 1, 1);
book(_h["pt100_nch20_nch"], 35, 1, 1);
book(_h["pt100_nch20_pt"], 31, 1, 1);
book(_h["pt100_nch20_eta"], 27, 1, 1);
book(_h["pt500_nch1_nch"], 17, 1, 1);
book(_h["pt500_nch1_pt"], 10, 1, 1);
book(_h["pt500_nch1_eta"], 3, 1, 1);
book(_p["pt500_nch1_ptnch"], 23, 1, 1);
book(_h["pt500_nch6_nch"], 21, 1, 1);
book(_h["pt500_nch6_pt"], 14, 1, 1);
book(_h["pt500_nch6_eta"], 7, 1, 1);
book(_h["pt2500_nch1_nch"], 37, 1, 1);
book(_h["pt2500_nch1_pt"], 33, 1, 1);
book(_h["pt2500_nch1_eta"], 29, 1, 1);
book(_p["pt2500_nch1_ptnch"], 39, 1, 1);
} else {
throw LogicError("The ATLAS_2010_S8918562 analysis is only valid for sqrt(s) = 900, 2360 and 7000 GeV!");
}
}
void analyze(const Event& event) {
// 100 GeV final states
if (!isCompatibleWithSqrtS(2360)) {
const ChargedFinalState& cfs100 = apply<ChargedFinalState>(event, "CFS100");
// nch>=2
fillPtEtaNch(cfs100, 2, "pt100_nch2");
// nch>=20
fillPtEtaNch(cfs100, 20, "pt100_nch20");
}
// 500 GeV final states
const ChargedFinalState& cfs500 = apply<ChargedFinalState>(event, "CFS500");
// nch>=1
fillPtEtaNch(cfs500, 1, "pt500_nch1");
// nch>=6
if (!isCompatibleWithSqrtS(2360)) {
fillPtEtaNch(cfs500, 6, "pt500_nch6");
}
// 2500 GeV final states
if (!isCompatibleWithSqrtS(2360)) {
const ChargedFinalState& cfs2500 = apply<ChargedFinalState>(event, "CFS2500");
// nch>=1
fillPtEtaNch(cfs2500, 1, "pt2500_nch1");
}
}
void finalize() {
double sf = safediv(1.0, _h["pt500_nch1_nch"]->integral(true), 1.0);
scale(_h["pt500_nch1_nch"], sf);
scale(_h["pt500_nch1_pt"], sf/TWOPI/5);
scale(_h["pt500_nch1_eta"], sf);
if (!isCompatibleWithSqrtS(2360)) {
sf = safediv(1.0, _h["pt100_nch2_nch"]->integral(true), 1.0);
scale(_h["pt100_nch2_nch"], sf);
scale(_h["pt100_nch2_pt"], sf/TWOPI/5);
scale(_h["pt100_nch2_eta"], sf);
sf = safediv(1.0, _h["pt100_nch20_nch"]->integral(true), 1.0);
scale(_h["pt100_nch20_nch"], sf);
scale(_h["pt100_nch20_pt"], sf/TWOPI/5);
scale(_h["pt100_nch20_eta"], sf);
sf = safediv(1.0, _h["pt500_nch6_nch"]->integral(true), 1.0);
scale(_h["pt500_nch6_nch"], sf);
scale(_h["pt500_nch6_pt"], sf/TWOPI/5);
scale(_h["pt500_nch6_eta"], sf);
sf = safediv(1.0, _h["pt2500_nch1_nch"]->integral(true), 1.0);
scale(_h["pt2500_nch1_nch"], sf);
scale(_h["pt2500_nch1_pt"], sf/TWOPI/5);
scale(_h["pt2500_nch1_eta"], sf);
}
}
private:
/// Helper for collectively filling Nch, pT, eta, and pT vs. Nch histograms
void fillPtEtaNch(const ChargedFinalState& cfs, const int nchcut, const string& label) {
// Get number of particles and skip if event fails cut
const int nch = cfs.size();
if (nch < nchcut) return;
// Fill nch
_h[label + "_nch"]->fill(nch);
// Loop over particles, fill pT, eta and ptnch
for (const Particle& p : cfs.particles()) {
const double pt = p.pT();
_h[label + "_pt"]->fill(pt/GeV, 1.0/pt);
_h[label + "_eta"]->fill(p.eta());
if (_p[label + "_ptnch"]) _p[label + "_ptnch"]->fill(nch, pt/GeV);
}
}
map<string, Histo1DPtr> _h;
map<string, Profile1DPtr> _p;
};
RIVET_DECLARE_ALIASED_PLUGIN(ATLAS_2010_S8918562, ATLAS_2010_I882098);
}
|