Rivet Analyses Reference

ATLAS_2010_S8919674

$W$ + jets jet multiplicities and $p_\perp$
Experiment: ATLAS (LHC)
Inspire ID: 882534
Status: VALIDATED
Authors:
  • Frank Siegert
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • W+jets events ideally with matrix element corrections to describe the higher jet multiplicities correctly. Both channels, electron and muon, are part of this analysis and should be run simultaneously.

Cross sections, in both the electron and muon decay modes of the W boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections for inclusive jet multiplicities. The results, based on an integrated luminosity of 1.3 pb-1, have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics.

Source code: ATLAS_2010_S8919674.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/WFinder.hh"

namespace Rivet {


  /// W + jets jet multiplicities and pT
  class ATLAS_2010_S8919674 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2010_S8919674);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {

      // Set up projections to find the electron and muon Ws
      FinalState fs;
      Cut cuts = (Cuts::abseta < 1.37 || Cuts::absetaIn(1.52, 2.47)) && Cuts::pT > 20*GeV;
      WFinder wfinder_e(fs, cuts, PID::ELECTRON, 0*GeV, 1000*GeV, 25*GeV);
      declare(wfinder_e, "W_e");
      WFinder wfinder_mu(fs, Cuts::abseta < 2.4 && Cuts::pT > 20*GeV, PID::MUON, 0*GeV, 1000*GeV, 25*GeV);
      declare(wfinder_mu, "W_mu");

      // Input for the jets: no neutrinos, no muons, and no electron which passed the electron cuts
      VetoedFinalState veto;
      veto.addVetoOnThisFinalState(wfinder_e);
      veto.addVetoOnThisFinalState(wfinder_mu);
      veto.addVetoPairId(PID::MUON);
      veto.vetoNeutrinos();
      FastJets jets(veto, FastJets::ANTIKT, 0.4);
      declare(jets, "jets");

      /// Book histograms
      book(_h_el_njet_inclusive ,1,1,1);
      book(_h_mu_njet_inclusive ,2,1,1);
      book(_h_el_pT_jet1 ,5,1,1);
      book(_h_mu_pT_jet1 ,6,1,1);
      book(_h_el_pT_jet2 ,7,1,1);
      book(_h_mu_pT_jet2 ,8,1,1);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const Jets& jets = apply<FastJets>(event, "jets").jetsByPt(20.0*GeV);

      const WFinder& We = apply<WFinder>(event, "W_e");
      if (We.bosons().size() == 1) {
        const FourMomentum p_miss = We.constituentNeutrinos()[0];
        const FourMomentum p_lept = We.constituentLeptons()[0];
        if (p_miss.Et() > 25*GeV && We.mT() > 40*GeV) {
          Jets js;
          for (const Jet& j : jets) {
            if (j.abseta() < 2.8 && deltaR(p_lept, j.momentum()) > 0.5)
              js.push_back(j);
          }
          _h_el_njet_inclusive->fill(0);
          if (js.size() >= 1) {
            _h_el_njet_inclusive->fill(1);
            _h_el_pT_jet1->fill(js[0].pT());
          }
          if (js.size() >= 2) {
            _h_el_njet_inclusive->fill(2);
            _h_el_pT_jet2->fill(js[1].pT());
          }
          if (js.size() >= 3) {
            _h_el_njet_inclusive->fill(3);
          }
        }
      }

      const WFinder& Wm = apply<WFinder>(event, "W_mu");
      if (Wm.bosons().size() == 1) {
        const FourMomentum p_miss = Wm.constituentNeutrinos()[0];
        const FourMomentum p_lept = Wm.constituentLeptons()[0];
        if (p_miss.Et() > 25*GeV && Wm.mT() > 40*GeV) {
          Jets js;
          for (const Jet& j : jets) {
            if (j.abseta() < 2.8 && deltaR(p_lept, j.momentum()) > 0.5)
              js.push_back(j);
          }
          _h_mu_njet_inclusive->fill(0);
          if (js.size() >= 1) {
            _h_mu_njet_inclusive->fill(1);
            _h_mu_pT_jet1->fill(js[0].pT());
          }
          if (js.size() >= 2) {
            _h_mu_njet_inclusive->fill(2);
            _h_mu_pT_jet2->fill(js[1].pT());
          }
          if (js.size() >= 3) {
            _h_mu_njet_inclusive->fill(3);
          }
          if (js.size() >= 4) {
            _h_mu_njet_inclusive->fill(4);
          }
        }
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {
      double normfac = crossSection()/sumOfWeights();
      scale(_h_el_njet_inclusive, normfac);
      scale(_h_mu_njet_inclusive, normfac);
      scale(_h_el_pT_jet1, normfac);
      scale(_h_mu_pT_jet1, normfac);
      scale(_h_el_pT_jet2, normfac);
      scale(_h_mu_pT_jet2, normfac);
    }

    ///@}


  private:

    /// @name Histograms
    /// @{
    Histo1DPtr _h_el_njet_inclusive;
    Histo1DPtr _h_mu_njet_inclusive;
    Histo1DPtr _h_el_pT_jet1;
    Histo1DPtr _h_mu_pT_jet1;
    Histo1DPtr _h_el_pT_jet2;
    Histo1DPtr _h_mu_pT_jet2;
    /// @}

  };



  RIVET_DECLARE_ALIASED_PLUGIN(ATLAS_2010_S8919674, ATLAS_2010_I882534);

}