1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/WFinder.hh"
namespace Rivet {
/// W + jets jet multiplicities and pT
class ATLAS_2010_S8919674 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2010_S8919674);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Set up projections to find the electron and muon Ws
FinalState fs;
Cut cuts = (Cuts::abseta < 1.37 || Cuts::absetaIn(1.52, 2.47)) && Cuts::pT > 20*GeV;
WFinder wfinder_e(fs, cuts, PID::ELECTRON, 0*GeV, 1000*GeV, 25*GeV);
declare(wfinder_e, "W_e");
WFinder wfinder_mu(fs, Cuts::abseta < 2.4 && Cuts::pT > 20*GeV, PID::MUON, 0*GeV, 1000*GeV, 25*GeV);
declare(wfinder_mu, "W_mu");
// Input for the jets: no neutrinos, no muons, and no electron which passed the electron cuts
VetoedFinalState veto;
veto.addVetoOnThisFinalState(wfinder_e);
veto.addVetoOnThisFinalState(wfinder_mu);
veto.addVetoPairId(PID::MUON);
veto.vetoNeutrinos();
FastJets jets(veto, FastJets::ANTIKT, 0.4);
declare(jets, "jets");
/// Book histograms
book(_h_el_njet_inclusive ,1,1,1);
book(_h_mu_njet_inclusive ,2,1,1);
book(_h_el_pT_jet1 ,5,1,1);
book(_h_mu_pT_jet1 ,6,1,1);
book(_h_el_pT_jet2 ,7,1,1);
book(_h_mu_pT_jet2 ,8,1,1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const Jets& jets = apply<FastJets>(event, "jets").jetsByPt(20.0*GeV);
const WFinder& We = apply<WFinder>(event, "W_e");
if (We.bosons().size() == 1) {
const FourMomentum p_miss = We.constituentNeutrinos()[0];
const FourMomentum p_lept = We.constituentLeptons()[0];
if (p_miss.Et() > 25*GeV && We.mT() > 40*GeV) {
Jets js;
for (const Jet& j : jets) {
if (j.abseta() < 2.8 && deltaR(p_lept, j.momentum()) > 0.5)
js.push_back(j);
}
_h_el_njet_inclusive->fill(0);
if (js.size() >= 1) {
_h_el_njet_inclusive->fill(1);
_h_el_pT_jet1->fill(js[0].pT());
}
if (js.size() >= 2) {
_h_el_njet_inclusive->fill(2);
_h_el_pT_jet2->fill(js[1].pT());
}
if (js.size() >= 3) {
_h_el_njet_inclusive->fill(3);
}
}
}
const WFinder& Wm = apply<WFinder>(event, "W_mu");
if (Wm.bosons().size() == 1) {
const FourMomentum p_miss = Wm.constituentNeutrinos()[0];
const FourMomentum p_lept = Wm.constituentLeptons()[0];
if (p_miss.Et() > 25*GeV && Wm.mT() > 40*GeV) {
Jets js;
for (const Jet& j : jets) {
if (j.abseta() < 2.8 && deltaR(p_lept, j.momentum()) > 0.5)
js.push_back(j);
}
_h_mu_njet_inclusive->fill(0);
if (js.size() >= 1) {
_h_mu_njet_inclusive->fill(1);
_h_mu_pT_jet1->fill(js[0].pT());
}
if (js.size() >= 2) {
_h_mu_njet_inclusive->fill(2);
_h_mu_pT_jet2->fill(js[1].pT());
}
if (js.size() >= 3) {
_h_mu_njet_inclusive->fill(3);
}
if (js.size() >= 4) {
_h_mu_njet_inclusive->fill(4);
}
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
double normfac = crossSection()/sumOfWeights();
scale(_h_el_njet_inclusive, normfac);
scale(_h_mu_njet_inclusive, normfac);
scale(_h_el_pT_jet1, normfac);
scale(_h_mu_pT_jet1, normfac);
scale(_h_el_pT_jet2, normfac);
scale(_h_mu_pT_jet2, normfac);
}
///@}
private:
/// @name Histograms
/// @{
Histo1DPtr _h_el_njet_inclusive;
Histo1DPtr _h_mu_njet_inclusive;
Histo1DPtr _h_el_pT_jet1;
Histo1DPtr _h_mu_pT_jet1;
Histo1DPtr _h_el_pT_jet2;
Histo1DPtr _h_mu_pT_jet2;
/// @}
};
RIVET_DECLARE_ALIASED_PLUGIN(ATLAS_2010_S8919674, ATLAS_2010_I882534);
}
|