1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
namespace Rivet {
/// Two-lepton supersymmetry search
class ATLAS_2011_S9019561 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2011_S9019561);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// projection to find the electrons
IdentifiedFinalState elecs(Cuts::abseta < 2.47 && Cuts::pT > 20*GeV);
elecs.acceptIdPair(PID::ELECTRON);
declare(elecs, "elecs");
// veto region electrons
Cut vetocut = Cuts::absetaIn(1.37, 1.52);
IdentifiedFinalState veto_elecs(vetocut && Cuts::pT > 10*GeV);
veto_elecs.acceptIdPair(PID::ELECTRON);
declare(veto_elecs, "veto_elecs");
// projection to find the muons
IdentifiedFinalState muons(Cuts::abseta < 2.4 && Cuts::pT > 20*GeV);
muons.acceptIdPair(PID::MUON);
declare(muons, "muons");
// jet finder
VetoedFinalState vfs;
vfs.addVetoPairId(PID::MUON);
declare(FastJets(vfs, FastJets::ANTIKT, 0.4), "AntiKtJets04");
// all tracks (to do deltaR with leptons)
declare(ChargedFinalState(Cuts::abseta < 3 && Cuts::pT > 0.5*GeV), "cfs");
// for pTmiss
declare(VisibleFinalState(Cuts::abseta < 4.9),"vfs");
/// book histograms
book(_count_OS_e_mu ,"count_OS_e+-mu-+", 1, 0., 1.);
book(_count_OS_e_e ,"count_OS_e+e-", 1, 0., 1.);
book(_count_OS_mu_mu ,"count_OS_mu+mu-", 1, 0., 1.);
book(_count_SS_e_mu ,"count_SS_e+-mu+-", 1, 0., 1.);
book(_count_SS_e_e ,"count_SS_e+-e+-", 1, 0., 1.);
book(_count_SS_mu_mu ,"count_SS_mu+-mu+-", 1, 0., 1.);
book(_hist_eTmiss_OS ,"Et_miss_OS", 20, 0., 400.);
book(_hist_eTmiss_SS ,"Et_miss_SS", 20, 0., 400.);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const double weight = 1.0;
Particles veto_e
= apply<IdentifiedFinalState>(event, "veto_elecs").particles();
if ( ! veto_e.empty() ) {
MSG_DEBUG("electrons in veto region");
vetoEvent;
}
Jets cand_jets;
for (const Jet& jet :
apply<FastJets>(event, "AntiKtJets04").jetsByPt(20.0*GeV) ) {
if ( fabs( jet.eta() ) < 2.5 ) {
cand_jets.push_back(jet);
}
}
Particles cand_e =
apply<IdentifiedFinalState>(event, "elecs").particlesByPt();
// charged particle for isolation
Particles chg_tracks =
apply<ChargedFinalState>(event, "cfs").particles();
// apply muon isolation
Particles cand_mu;
// pTcone around muon track
for ( const Particle & mu :
apply<IdentifiedFinalState>(event,"muons").particlesByPt() ) {
double pTinCone = -mu.pT();
for ( const Particle & track : chg_tracks ) {
if ( deltaR(mu.momentum(),track.momentum()) < 0.2 )
pTinCone += track.pT();
}
if ( pTinCone < 1.8*GeV )
cand_mu.push_back(mu);
}
// Discard jets that overlap with electrons
Jets recon_jets;
for ( const Jet& jet : cand_jets ) {
bool away_from_e = true;
for ( const Particle & e : cand_e ) {
if ( deltaR(e.momentum(),jet.momentum()) <= 0.2 ) {
away_from_e = false;
break;
}
}
if ( away_from_e )
recon_jets.push_back( jet );
}
// Leptons far from jet
Particles recon_e;
for ( const Particle & e : cand_e ) {
bool e_near_jet = false;
for ( const Jet& jet : recon_jets ) {
if ( deltaR(e.momentum(),jet.momentum()) < 0.4 ) {
e_near_jet = true;
break;
}
}
// Electron isolation criterion
if ( ! e_near_jet ) {
double EtinCone = -e.Et();
for ( const Particle & track : chg_tracks) {
if ( deltaR(e.momentum(),track.momentum()) <= 0.2 )
EtinCone += track.Et();
}
if ( EtinCone/e.pT() <= 0.15 )
recon_e.push_back( e );
}
}
Particles recon_mu;
for ( const Particle & mu : cand_mu ) {
bool mu_near_jet = false;
for ( const Jet& jet : recon_jets ) {
if ( deltaR(mu.momentum(),jet.momentum()) < 0.4 ) {
mu_near_jet = true;
break;
}
}
if ( ! mu_near_jet )
recon_mu.push_back( mu );
}
// pTmiss
Particles vfs_particles
= apply<VisibleFinalState>(event, "vfs").particles();
FourMomentum pTmiss;
for ( const Particle & p : vfs_particles ) {
pTmiss -= p.momentum();
}
double eTmiss = pTmiss.pT();
// Exactly two leptons for each event
if ( recon_mu.size() + recon_e.size() != 2)
vetoEvent;
// Lepton pair mass
FourMomentum p_leptons;
for ( Particle e : recon_e ) {
p_leptons += e.momentum();
}
for ( Particle mu : recon_mu) {
p_leptons += mu.momentum();
}
if ( p_leptons.mass() <= 5.0 * GeV)
vetoEvent;
// ==================== FILL ====================
// electron, electron
if (recon_e.size() == 2 ) {
// SS ee
if ( recon_e[0].pid() * recon_e[1].pid() > 0 ) {
_hist_eTmiss_SS->fill(eTmiss, weight);
if ( eTmiss > 100 ) {
MSG_DEBUG("Hits SS e+/-e+/-");
_count_SS_e_e->fill(0.5, weight);
}
}
// OS ee
else if ( recon_e[0].pid() * recon_e[1].pid() < 0) {
_hist_eTmiss_OS->fill(eTmiss, weight);
if ( eTmiss > 150 ) {
MSG_DEBUG("Hits OS e+e-");
_count_OS_e_e->fill(0.5, weight);
}
}
}
// muon, electron
else if ( recon_e.size() == 1 ) {
// SS mu_e
if ( recon_e[0].pid() * recon_mu[0].pid() > 0 ) {
_hist_eTmiss_SS->fill(eTmiss, weight);
if ( eTmiss > 100 ) {
MSG_DEBUG("Hits SS e+/-mu+/-");
_count_SS_e_mu->fill(0.5, weight);
}
}
// OS mu_e
else if ( recon_e[0].pid() * recon_mu[0].pid() < 0) {
_hist_eTmiss_OS->fill(eTmiss, weight);
if ( eTmiss > 150 ) {
MSG_DEBUG("Hits OS e+mu-");
_count_OS_e_mu->fill(0.5, weight);
}
}
}
// muon, muon
else if ( recon_mu.size() == 2 ) {
// SS mu_mu
if ( recon_mu[0].pid() * recon_mu[1].pid() > 0 ) {
_hist_eTmiss_SS->fill(eTmiss, weight);
if ( eTmiss > 100 ) {
MSG_DEBUG("Hits SS mu+/-mu+/-");
_count_SS_mu_mu->fill(0.5, weight);
}
}
// OS mu_mu
else if ( recon_mu[0].pid() * recon_mu[1].pid() < 0) {
_hist_eTmiss_OS->fill(eTmiss, weight);
if ( eTmiss > 150 ) {
MSG_DEBUG("Hits OS mu+mu-");
_count_OS_mu_mu->fill(0.5, weight);
}
}
}
}
//@}
void finalize() {
double norm = crossSection()/picobarn*35./sumOfWeights();
// event counts
scale(_count_OS_e_mu ,norm);
scale(_count_OS_e_e ,norm);
scale(_count_OS_mu_mu,norm);
scale(_count_SS_e_mu ,norm);
scale(_count_SS_e_e ,norm);
scale(_count_SS_mu_mu,norm);
scale(_hist_eTmiss_OS,10.*norm);
scale(_hist_eTmiss_SS,10.*norm);
}
private:
/// @name Histograms
//@{
Histo1DPtr _count_OS_e_mu;
Histo1DPtr _count_OS_e_e;
Histo1DPtr _count_OS_mu_mu;
Histo1DPtr _count_SS_e_mu;
Histo1DPtr _count_SS_e_e;
Histo1DPtr _count_SS_mu_mu;
Histo1DPtr _hist_eTmiss_OS;
Histo1DPtr _hist_eTmiss_SS;
//@}
};
RIVET_DECLARE_ALIASED_PLUGIN(ATLAS_2011_S9019561, ATLAS_2011_I894578);
}
|