Rivet Analyses Reference

ATLAS_2011_S9128077

Measurement of multi-jet cross sections
Experiment: ATLAS (LHC)
Inspire ID: 917599
Status: VALIDATED
Authors:
  • Frank Siegert
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • Pure QCD, inclusive enough for jet pT down to 60 GeV.

Inclusive multi-jet production is studied using an integrated luminosity of 2.4 pb-1. Results on multi-jet cross sections are presented differential in pT of the four leading jets, HT. Additionally three-to-two jet fractions are presented differential in different observables. Jets are anti-$k_t$ with $R=0.4$ and $R=0.6$, $p_\perp>80(60)$ GeV and $|\eta|<2.8$.

Source code: ATLAS_2011_S9128077.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {


  /// Measurement of multi-jet cross sections
  class ATLAS_2011_S9128077 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2011_S9128077);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Projections
      const FinalState fs;
      FastJets j4(fs, FastJets::ANTIKT, 0.4);
      j4.useInvisibles();
      declare(j4, "AntiKtJets04");
      FastJets j6(fs, FastJets::ANTIKT, 0.6);
      j6.useInvisibles();
      declare(j6, "AntiKtJets06");

      // Persistent histograms
      book(_h_jet_multi_inclusive ,1, 1, 1);
      book(_h_jet_multi_ratio, 2, 1, 1, true);
      _h_jet_pT.resize(4);
      book(_h_jet_pT[0] ,3, 1, 1);
      book(_h_jet_pT[1] ,4, 1, 1);
      book(_h_jet_pT[2] ,5, 1, 1);
      book(_h_jet_pT[3] ,6, 1, 1);
      book(_h_HT_2 ,7, 1, 1);
      book(_h_HT_3 ,8, 1, 1);
      book(_h_HT_4 ,9, 1, 1);
      //
      book(_h_pTlead_R06_60_ratio, 10, 1, 1);
      book(_h_pTlead_R06_80_ratio, 11, 1, 1);
      book(_h_pTlead_R06_110_ratio, 12, 1, 1);
      book(_h_pTlead_R04_60_ratio, 13, 1, 1);
      book(_h_pTlead_R04_80_ratio, 14, 1, 1);
      book(_h_pTlead_R04_110_ratio, 15, 1, 1);
      book(_h_HT2_R06_ratio, 16, 1, 1);
      book(_h_HT2_R04_ratio, 17, 1, 1);

      // Temporary histograms to be divided for the dsigma3/dsigma2 ratios
      book(_h_tmp_pTlead_R06_60_2 , "_pTlead_R06_60_2",  refData(10, 1, 1));
      book(_h_tmp_pTlead_R06_80_2 , "_pTlead_R06_80_2",  refData(11, 1, 1));
      book(_h_tmp_pTlead_R06_110_2, "_pTlead_R06_110_2", refData(12, 1, 1));
      book(_h_tmp_pTlead_R06_60_3 , "_pTlead_R06_60_3",  refData(10, 1, 1));
      book(_h_tmp_pTlead_R06_80_3 , "_pTlead_R06_80_3",  refData(11, 1, 1));
      book(_h_tmp_pTlead_R06_110_3, "_pTlead_R06_110_3", refData(12, 1, 1));
      //
      book(_h_tmp_pTlead_R04_60_2 , "_pTlead_R04_60_2",  refData(13, 1, 1));
      book(_h_tmp_pTlead_R04_80_2 , "_pTlead_R04_80_2",  refData(14, 1, 1));
      book(_h_tmp_pTlead_R04_110_2, "_pTlead_R04_110_2", refData(15, 1, 1));
      book(_h_tmp_pTlead_R04_60_3 , "_pTlead_R04_60_3",  refData(13, 1, 1));
      book(_h_tmp_pTlead_R04_80_3 , "_pTlead_R04_80_3",  refData(14, 1, 1));
      book(_h_tmp_pTlead_R04_110_3, "_pTlead_R04_110_3", refData(15, 1, 1));
      //
      book(_h_tmp_HT2_R06_2, "_HT2_R06_2", refData(16, 1, 1));
      book(_h_tmp_HT2_R06_3, "_HT2_R06_3", refData(16, 1, 1));
      book(_h_tmp_HT2_R04_2, "_HT2_R04_2", refData(17, 1, 1));
      book(_h_tmp_HT2_R04_3, "_HT2_R04_3", refData(17, 1, 1));
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      vector<FourMomentum> jets04;
      for (const Jet& jet : apply<FastJets>(event, "AntiKtJets04").jetsByPt(60.0*GeV)) {
        if (jet.abseta() < 2.8) {
          jets04.push_back(jet.momentum());
        }
      }

      if (jets04.size() > 1 && jets04[0].pT() > 80.0*GeV) {
        for (size_t i = 2; i <= jets04.size(); ++i) {
          _h_jet_multi_inclusive->fill(i);
        }

        double HT = 0.0;
        for (size_t i = 0; i < jets04.size(); ++i) {
          if (i < _h_jet_pT.size()) _h_jet_pT[i]->fill(jets04[i].pT());
          HT += jets04[i].pT();
        }

        if (jets04.size() >= 2) _h_HT_2->fill(HT);
        if (jets04.size() >= 3) _h_HT_3->fill(HT);
        if (jets04.size() >= 4) _h_HT_4->fill(HT);

        double pT1(jets04[0].pT()), pT2(jets04[1].pT());
        double HT2 = pT1 + pT2;
        if (jets04.size() >= 2) {
          _h_tmp_HT2_R04_2->fill(HT2);
          _h_tmp_pTlead_R04_60_2->fill(pT1);
          if (pT2 > 80.0*GeV) _h_tmp_pTlead_R04_80_2->fill(pT1);
          if (pT2 > 110.0*GeV) _h_tmp_pTlead_R04_110_2->fill(pT1);
        }
        if (jets04.size() >= 3) {
          double pT3(jets04[2].pT());
          _h_tmp_HT2_R04_3->fill(HT2);
          _h_tmp_pTlead_R04_60_3->fill(pT1);
          if (pT3 > 80.0*GeV) _h_tmp_pTlead_R04_80_3->fill(pT1);
          if (pT3 > 110.0*GeV) _h_tmp_pTlead_R04_110_3->fill(pT1);
        }
      }

      /// @todo It'd be better to avoid duplicating 95% of the code!
      vector<FourMomentum> jets06;
      for (const Jet& jet : apply<FastJets>(event, "AntiKtJets06").jetsByPt(60.0*GeV)) {
        if (jet.abseta() < 2.8) {
          jets06.push_back(jet.momentum());
        }
      }
      if (jets06.size() > 1 && jets06[0].pT() > 80.0*GeV) {
        double pT1(jets06[0].pT()), pT2(jets06[1].pT());
        double HT2 = pT1 + pT2;
        if (jets06.size() >= 2) {
          _h_tmp_HT2_R06_2->fill(HT2);
          _h_tmp_pTlead_R06_60_2->fill(pT1);
          if (pT2 > 80.0*GeV) _h_tmp_pTlead_R06_80_2->fill(pT1);
          if (pT2 > 110.0*GeV) _h_tmp_pTlead_R06_110_2->fill(pT1);
        }
        if (jets06.size() >= 3) {
          double pT3(jets06[2].pT());
          _h_tmp_HT2_R06_3->fill(HT2);
          _h_tmp_pTlead_R06_60_3->fill(pT1);
          if (pT3 > 80.0*GeV) _h_tmp_pTlead_R06_80_3->fill(pT1);
          if (pT3 > 110.0*GeV) _h_tmp_pTlead_R06_110_3->fill(pT1);
        }
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {

      // Normalize std histos
      scale(_h_jet_multi_inclusive, crossSectionPerEvent());
      scale(_h_jet_pT[0], crossSectionPerEvent());
      scale(_h_jet_pT[1], crossSectionPerEvent());
      scale(_h_jet_pT[2], crossSectionPerEvent());
      scale(_h_jet_pT[3], crossSectionPerEvent());
      scale(_h_HT_2, crossSectionPerEvent());
      scale(_h_HT_3, crossSectionPerEvent());
      scale(_h_HT_4, crossSectionPerEvent());

      scale(_h_tmp_pTlead_R06_60_2 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R06_80_2 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R06_110_2, crossSectionPerEvent());
      scale(_h_tmp_pTlead_R06_60_3 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R06_80_3 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R06_110_3, crossSectionPerEvent());

      scale(_h_tmp_pTlead_R04_60_2 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R04_80_2 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R04_110_2, crossSectionPerEvent());
      scale(_h_tmp_pTlead_R04_60_3 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R04_80_3 , crossSectionPerEvent());
      scale(_h_tmp_pTlead_R04_110_3, crossSectionPerEvent());

      scale(_h_tmp_HT2_R06_2, crossSectionPerEvent());
      scale(_h_tmp_HT2_R06_3, crossSectionPerEvent());
      scale(_h_tmp_HT2_R04_2, crossSectionPerEvent());
      scale(_h_tmp_HT2_R04_3, crossSectionPerEvent());

      // Fill inclusive jet multiplicity ratio
      for (size_t b = 0; b < _h_jet_multi_ratio->numPoints(); ++b) {
        if (_h_jet_multi_inclusive->bin(b).sumW() != 0) {
          const double val = _h_jet_multi_inclusive->bin(b+1).sumW() / _h_jet_multi_inclusive->bin(b).sumW();
          // @todo Shouldn't these be added in quadrature??
          const double err = ( _h_jet_multi_inclusive->bin(b+1).relErr() + _h_jet_multi_inclusive->bin(b).relErr() ) * val;
          _h_jet_multi_ratio->point(b).setY(val, err);
        }
        else {
          _h_jet_multi_ratio->point(b).setY(0., 0.);
        }
      }

      /// Create ratio histograms
      divide(_h_tmp_pTlead_R06_60_3,_h_tmp_pTlead_R06_60_2, _h_pTlead_R06_60_ratio);
      divide(_h_tmp_pTlead_R06_80_3,_h_tmp_pTlead_R06_80_2, _h_pTlead_R06_80_ratio);
      divide(_h_tmp_pTlead_R06_110_3,_h_tmp_pTlead_R06_110_2, _h_pTlead_R06_110_ratio);
      divide(_h_tmp_pTlead_R04_60_3,_h_tmp_pTlead_R04_60_2, _h_pTlead_R04_60_ratio);
      divide(_h_tmp_pTlead_R04_80_3,_h_tmp_pTlead_R04_80_2, _h_pTlead_R04_80_ratio);
      divide(_h_tmp_pTlead_R04_110_3,_h_tmp_pTlead_R04_110_2, _h_pTlead_R04_110_ratio);
      divide(_h_tmp_HT2_R06_3,_h_tmp_HT2_R06_2, _h_HT2_R06_ratio);
      divide(_h_tmp_HT2_R04_3,_h_tmp_HT2_R04_2, _h_HT2_R04_ratio);
    }

    //@}


  private:

    /// @name Histograms
    //@{
    Histo1DPtr _h_jet_multi_inclusive;
    Scatter2DPtr _h_jet_multi_ratio;
    vector<Histo1DPtr> _h_jet_pT;
    Histo1DPtr _h_HT_2;
    Histo1DPtr _h_HT_3;
    Histo1DPtr _h_HT_4;
    //@}

    /// @name Ratio histograms
    //@{
    Scatter2DPtr _h_pTlead_R06_60_ratio, _h_pTlead_R06_80_ratio, _h_pTlead_R06_110_ratio;
    Scatter2DPtr _h_pTlead_R04_60_ratio, _h_pTlead_R04_80_ratio, _h_pTlead_R04_110_ratio;
    Scatter2DPtr _h_HT2_R06_ratio, _h_HT2_R04_ratio;
    //@}

    /// @name Temporary histograms to be divided for the dsigma3/dsigma2 ratios
    //@{
    Histo1DPtr _h_tmp_pTlead_R06_60_2, _h_tmp_pTlead_R06_80_2, _h_tmp_pTlead_R06_110_2;
    Histo1DPtr _h_tmp_pTlead_R06_60_3, _h_tmp_pTlead_R06_80_3, _h_tmp_pTlead_R06_110_3;
    Histo1DPtr _h_tmp_pTlead_R04_60_2, _h_tmp_pTlead_R04_80_2, _h_tmp_pTlead_R04_110_2;
    Histo1DPtr _h_tmp_pTlead_R04_60_3, _h_tmp_pTlead_R04_80_3, _h_tmp_pTlead_R04_110_3;
    Histo1DPtr _h_tmp_HT2_R06_2, _h_tmp_HT2_R06_3, _h_tmp_HT2_R04_2, _h_tmp_HT2_R04_3;
    //@}

  };



  RIVET_DECLARE_ALIASED_PLUGIN(ATLAS_2011_S9128077, ATLAS_2011_I917599);


}