Rivet Analyses Reference

ATLAS_2012_CONF_2012_153

4 or more lepton plus missing transverse energy SUSY search
Experiment: ATLAS (LHC)
Status: PRELIMINARY
Authors:
  • Peter Richardson
References:
  • ATLAS-CONF-2012-153
Beams: p+ p+
Beam energies: (4000.0, 4000.0) GeV
Run details:
  • BSM signal events at 8000 GeV.

Search for SUSY using events with 4 or more leptons in association with missing transverse energy in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data sample has a total integrated luminosity of 13.0 fb$^{-1}$. There is no reference data and in addition to the control plots from the paper the number of events in the two signal regions, correctly normalized to an integrated luminosity 13.0 fb$^{-1}$, are calculated.

Source code: ATLAS_2012_CONF_2012_153.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Tools/RivetMT2.hh"

namespace Rivet {


  class ATLAS_2012_CONF_2012_153 : public Analysis {
  public:

    /// @name Constructors etc.
    //@{

    /// Constructor
    ATLAS_2012_CONF_2012_153()
      : Analysis("ATLAS_2012_CONF_2012_153")
    {    }

    //@}



  public:

    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // projection to find the electrons
      IdentifiedFinalState elecs(Cuts::abseta < 2.47 && Cuts::pT > 10*GeV);
      elecs.acceptIdPair(PID::ELECTRON);
      declare(elecs, "elecs");


      // projection to find the muons
      IdentifiedFinalState muons(Cuts::abseta < 2.4 && Cuts::pT > 10*GeV);
      muons.acceptIdPair(PID::MUON);
      declare(muons, "muons");

      // for pTmiss
      declare(VisibleFinalState(Cuts::abseta < 4.9), "vfs");

      VetoedFinalState vfs;
      vfs.addVetoPairId(PID::MUON);

      /// Jet finder
      declare(FastJets(vfs, FastJets::ANTIKT, 0.4), "AntiKtJets04");

      // all tracks (to do deltaR with leptons)
      declare(ChargedFinalState(Cuts::abseta < 3.0), "cfs");

      vector<double> edges_meff;
      edges_meff.push_back(   0);
      edges_meff.push_back( 150);
      edges_meff.push_back( 300);
      edges_meff.push_back( 500);
      edges_meff.push_back(1000);
      edges_meff.push_back(1500);

      vector<double> edges_eT;
      edges_eT.push_back(0);
      edges_eT.push_back(50);
      edges_eT.push_back(150);
      edges_eT.push_back(300);
      edges_eT.push_back(500);

      // Book histograms
      book(_hist_electrons ,"hist_electrons_before", 11, -0.5,10.5);
      book(_hist_muons     ,"hist_muons_before"    , 11, -0.5,10.5);
      book(_hist_leptons   ,"hist_leptons_before"  , 11, -0.5,10.5);
      book(_hist_4leptons  ,"hist_4leptons", 1, 0.,1.);
      book(_hist_veto      ,"hist_veto", 1, 0., 1.);
      book(_hist_etmiss    ,"hist_etmiss",edges_eT);
      book(_hist_meff      ,"hist_m_eff",edges_meff);
      book(_count_SR1      ,"count_SR1", 1, 0., 1.);
      book(_count_SR2      ,"count_SR2", 1, 0., 1.);

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const double weight = 1.0;
      // get the jet candidates
      Jets cand_jets;
      for (const Jet& jet : apply<FastJets>(event, "AntiKtJets04").jetsByPt(20.0*GeV) ) {
        if (jet.abseta() < 2.5) cand_jets.push_back(jet);
      }

      // candidate muons
      Particles cand_mu = apply<IdentifiedFinalState>(event, "muons").particlesByPt();

      // candidate electrons
      // Discard if two electrons are within R=0.1
      Particles temp = apply<IdentifiedFinalState>(event, "elecs").particles(cmpMomByE);
      vector<bool> vetoed(temp.size(),false);
      Particles cand_e;
      for (size_t ix = 0; ix < temp.size(); ++ix) {
        if (vetoed[ix]) continue;
        for (size_t iy = ix+1; iy < temp.size(); ++iy) {
          if ( deltaR(temp[ix], temp[iy]) < 0.1 ) vetoed[iy] = true;
        }
        if (!vetoed[ix]) cand_e.push_back(temp[ix]);
      }

      // Sort by transverse momentum
      sortByPt(cand_e);

      // resolve jet/lepton ambiguity
      Jets recon_jets;
      for ( const Jet& jet : cand_jets ) {
        bool away_from_e = true;
        for ( const Particle& e : cand_e ) {
          if (deltaR(e, jet) <= 0.2) {
            away_from_e = false;
            break;
          }
        }
        if (away_from_e) recon_jets.push_back( jet );
      }

      // only keep electrons more than R=0.4 from jets
      Particles cand2_e;
      for (const Particle& e : cand_e) {
        // at least 0.4 from any jets
        bool away = true;
        for ( const Jet& jet : recon_jets ) {
          if ( deltaR(e, jet) < 0.4 ) {
            away = false;
            break;
          }
        }
        // if isolated keep it
        if ( away )
          cand2_e.push_back( e );
      }

      // only keep muons more than R=0.4 from jets
      Particles cand2_mu;
      for(const Particle & mu : cand_mu ) {
        bool away = true;
        // at least 0.4 from any jets
        for ( const Jet& jet : recon_jets ) {
          if ( deltaR(mu, jet) < 0.4 ) {
            away = false;
            break;
          }
        }
        if (away) cand2_mu.push_back( mu );
      }

      // electron and muon more than 0.1 apart
      Particles cand3_e;
      for ( const Particle & e : cand2_e ) {
        bool away = true;
        for( const Particle & mu : cand2_mu ) {
          if( deltaR(e, mu) < 0.1) {
            away = false;
            break;
          }
        }
        if (away) cand3_e.push_back(e);
      }
      Particles cand3_mu;
      for( const Particle & mu : cand2_mu ) {
        bool away = true;
        for ( const Particle & e : cand2_e ) {
          if( deltaR(e, mu) < 0.1) {
            away = false;
            break;
          }
        }
        if (away) cand3_mu.push_back(mu);
      }

      // pTmiss
      Particles vfs_particles =
        apply<VisibleFinalState>(event, "vfs").particles();
      FourMomentum pTmiss;
      for ( const Particle & p : vfs_particles ) {
        pTmiss -= p.momentum();
      }
      double eTmiss = pTmiss.pT();

      // apply electron isolation
      Particles chg_tracks =
        apply<ChargedFinalState>(event, "cfs").particles();
      Particles cand4_e;
      for (const Particle& e : cand3_e) {
        // charge isolation
        double pTinCone = -e.pT();
        for (const Particle& track : chg_tracks) {
          if (track.pT() > 0.4*GeV && deltaR(e, track) <= 0.3 )
            pTinCone += track.pT();
        }
        if (pTinCone/e.pT() > 0.16) continue;
        // all particles isolation
        pTinCone = -e.pT();
        for (const Particle& p : vfs_particles) {
          if (p.abspid() != PID::MUON && deltaR(e, p) <= 0.3 )
            pTinCone += p.pT();
        }
        if (pTinCone/e.pT() < 0.18) cand4_e.push_back(e);
      }

      // apply muon isolation
      Particles cand4_mu;
      for ( const Particle & mu : cand3_mu ) {
        double pTinCone = -mu.perp();
        for ( const Particle & track : chg_tracks ) {
          if (track.pT() > 1*GeV && deltaR(mu, track) <= 0.3)
            pTinCone += track.pT();
        }
        if (pTinCone/mu.pT() < 0.12) cand4_mu.push_back(mu);
      }

      // same SOSF pairs m>12.
      Particles recon_e;
      for(const Particle& e : cand4_e) {
        bool veto = false;
        for(const Particle& e2 : cand4_e) {
          if (e.pid()*e2.pid() < 0 && (e.momentum()+e2.momentum()).mass() < 12*GeV) {
            veto = true;
            break;
          }
        }
        if (!veto) recon_e.push_back(e);
      }
      Particles recon_mu;
      for(const Particle& mu : cand4_mu) {
        bool veto = false;
        for(const Particle& mu2 : cand4_mu) {
          if (mu.pid()*mu2.pid() < 0 && (mu.momentum()+mu2.momentum()).mass() < 12*GeV) {
            veto = true;
            break;
          }
        }
        if (!veto) recon_mu.push_back(mu);
      }

      // now only use recon_jets, recon_mu, recon_e
      _hist_electrons->fill(recon_e.size(), weight);
      _hist_muons->fill(recon_mu.size(), weight);
      _hist_leptons->fill(recon_mu.size() + recon_e.size(), weight);
      if (recon_mu.size() + recon_e.size() > 3) {
        _hist_4leptons->fill(0.5, weight);
      }

      // reject events with less than 4 electrons and muons
      if (recon_mu.size() + recon_e.size() < 4) {
        MSG_DEBUG("To few charged leptons left after selection");
        vetoEvent;
      }


      // or two lepton trigger
      bool passDouble =
        (recon_mu.size()>=2 && ( (recon_mu[1].pT()>14*GeV) ||
                                 (recon_mu[0].pT()>18*GeV && recon_mu[1].perp() > 10*GeV) )) ||
        (recon_e.size() >=2 && ( (recon_e [1].pT()>14*GeV) ||
                                 (recon_e [0].pT()>25*GeV && recon_e [1].perp() > 10*GeV) )) ||
        (!recon_e.empty() && !recon_mu.empty() &&
         ( (recon_e[0].pT() > 14*GeV && recon_mu[0].pT() > 10*GeV)||
           (recon_e[0].pT() > 10*GeV && recon_mu[0].pT() > 18*GeV) ));

      // must pass a trigger
      if (!passDouble ) {
        MSG_DEBUG("Hardest lepton fails trigger");
        _hist_veto->fill(0.5, weight);
        vetoEvent;
      }

      // calculate meff
      double meff = eTmiss;
      for ( const Particle & e  : recon_e  ) meff += e.perp();
      for ( const Particle & mu : recon_mu ) meff += mu.perp();
      for ( const Jet & jet : recon_jets ) {
        const double pT = jet.pT();
        if (pT > 40*GeV) meff += pT;
      }

      // 2/3 leptons --> find 1 SFOS pair in range and veto event
      // 4+  leptons --> find 2 SFOS pairs and in range veto event
      for (size_t ix = 0; ix < recon_e.size(); ++ix) {
        for (size_t iy = ix+1; iy < recon_e.size(); ++iy) {
          if (recon_e[ix].pid()*recon_e[iy].pid() > 0) continue;
          const FourMomentum ppair = recon_e[ix].momentum() + recon_e[iy].momentum();
          if (inRange(ppair.mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;

          // check triplets with electron
          for (size_t iz = 0; iz < recon_e.size(); ++iz) {
            if (iz == ix || iz == iy) continue;
            if (inRange((ppair+recon_e[iz].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
          }

          // check triplets with muon
          for (size_t iz = 0; iz < recon_mu.size(); ++iz) {
            if (inRange((ppair+recon_mu[iz].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
          }

          // check quadruplets with electrons
          for (size_t iz = 0; iz < recon_e.size(); ++iz) {
            for (size_t iw = iz+1; iw < recon_e.size(); ++iw) {
              if (iz==ix || iz==iy || iw==ix || iw==iy) continue;
              if (recon_e[iz].pid()*recon_e[iw].pid() > 0) continue;
              if (inRange((ppair+recon_e[iz].momentum()+recon_e[iw].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
            }
          }
          // check quadruplets with muons
          for (size_t iz = 0; iz < recon_mu.size(); ++iz) {
            for (size_t iw = iz+1; iw < recon_mu.size(); ++iw) {
              if (recon_mu[iz].pid()*recon_mu[iw].pid() > 0) continue;
              if (inRange((ppair+recon_mu[iz].momentum()+recon_mu[iw].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
            }
          }
        }
      }

      // Muon pairs
      for (size_t ix = 0; ix < recon_mu.size(); ++ix) {
        for (size_t iy = ix+1; iy < recon_mu.size(); ++iy) {
          if (recon_mu[ix].pid()*recon_mu[iy].pid()>0) continue;
          const FourMomentum ppair = recon_mu[ix].momentum()+recon_mu[iy].momentum();
          if (inRange(ppair.mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;

          // check triplets with muon
          for (size_t iz = 0; iz < recon_mu.size(); ++iz) {
            if (iz==ix || iz==iy) continue;
            if (inRange((ppair+recon_mu[iz].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
          }

          // check triplets with electron
          for (size_t iz = 0; iz < recon_e.size(); ++iz) {
            if (inRange((ppair+recon_e[iz].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
          }

          // check muon quadruplets
          for (size_t iz = 0; iz < recon_mu.size(); ++iz) {
            for (size_t iw = iz+1; iy < recon_mu.size(); ++iy) {
              if (iz==ix || iz==iy || iw==ix || iw==iy) continue;
              if (recon_mu[iz].pid()*recon_mu[iw].pid() > 0) continue;
              if (inRange((ppair+recon_mu[iz].momentum()+recon_mu[iw].momentum()).mass(), 81.2*GeV, 101.2*GeV)) vetoEvent;
            }
          }
        }
      }

      // Make the control plots
      _hist_etmiss->fill(eTmiss,weight);
      _hist_meff  ->fill(meff  ,weight);
      // Finally the counts
      if (eTmiss > 50*GeV) _count_SR1->fill(0.5,weight);
      if (meff  >0*GeV) _count_SR2->fill(0.5,weight);

    }

    //@}

    void finalize() {
      double norm = crossSection()/femtobarn*13./sumOfWeights();
      scale(_hist_etmiss,norm*20.);
      scale(_hist_meff  ,norm*20.);
      scale(_count_SR1,norm);
      scale(_count_SR2,norm);
    }


  private:

    /// @name Histograms
    //@{
    Histo1DPtr _hist_electrons;
    Histo1DPtr _hist_muons;
    Histo1DPtr _hist_leptons;
    Histo1DPtr _hist_4leptons;
    Histo1DPtr _hist_veto;
    Histo1DPtr _hist_etmiss;
    Histo1DPtr _hist_meff;
    Histo1DPtr _count_SR1;
    Histo1DPtr _count_SR2;
    //@}

  };

  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ATLAS_2012_CONF_2012_153);

}