Rivet Analyses Reference

ATLAS_2012_I1199269

Inclusive diphoton $+ X$ events at $\sqrt{s} = 7$ TeV
Experiment: ATLAS (LHC)
Inspire ID: 1199269
Status: VALIDATED
Authors:
  • Giovanni Marchiori
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • Inclusive diphoton $+ X$ events at $\sqrt{s} = 7$ TeV.

The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at $\sqrt{s} = 7$ TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb$^{-1}$, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter ($|\eta|<1.37$ and $1.52<|\eta|<2.37$) and with an angular separation $\Delta R>0.4$, is $44.0^{+3.2}_{-4.2}$ pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins--Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.

Source code: ATLAS_2012_I1199269.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {


  /// @brief Measurement of isolated diphoton + X differential cross-sections
  ///
  /// Inclusive isolated gamma gamma cross-sections, differential in M(gg), pT(gg),
  /// dphi(gg), cos(theta*)_CS
  ///
  /// @author Giovanni Marchiori
  ///
  class ATLAS_2012_I1199269 : public Analysis {
  public:

    /// Constructor
    ATLAS_2012_I1199269()
      : Analysis("ATLAS_2012_I1199269")
    {    }


    /// Book histograms and initialise projections before the run
    void init() {

      FinalState fs;
      declare(fs, "FS");

      FastJets fj(fs, FastJets::KT, 0.5);
      fj.useJetArea(new fastjet::AreaDefinition(fastjet::VoronoiAreaSpec()));
      declare(fj, "KtJetsD05");

      IdentifiedFinalState photonfs(Cuts::abseta < 2.37 && Cuts::pT > 22*GeV);
      photonfs.acceptId(PID::PHOTON);
      declare(photonfs, "Photon");

      book(_h_M            ,1, 1, 1);
      book(_h_pT           ,2, 1, 1);
      book(_h_dPhi         ,3, 1, 1);
      book(_h_cosThetaStar ,4, 1, 1);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      // Require at least 2 photons in final state
      const Particles photons = apply<IdentifiedFinalState>(event, "Photon").particlesByPt();
      if (photons.size() < 2) vetoEvent;

      // Get jets, and corresponding jet areas
      vector<vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
      const auto clust_seq_area = apply<FastJets>(event, "KtJetsD05").clusterSeqArea();
      for (const Jet& jet : apply<FastJets>(event, "KtJetsD05").jets()) {
        const double area = clust_seq_area->area(jet); // implicit .pseudojet()
        if (area < 1e-3) continue;
        const int ieta = binIndex(jet.abseta(), _eta_bins_areaoffset);
        if (ieta != -1) ptDensities[ieta].push_back(jet.pT()/area);
      }

      // Compute median jet properties over the jets in the event
      vector<double> vptDensity; //, vsigma, vNjets;
      for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; ++b) {
        vptDensity += ptDensities[b].empty() ? 0 : median(ptDensities[b]);
      }


      // Loop over photons and fill vector of isolated ones
      Particles isolated_photons;
      for (const Particle& photon : photons) {
        /// Remove photons in ECAL crack region
        if (inRange(photon.abseta(), 1.37, 1.52)) continue;
        // Compute isolation via particles within an R=0.4 cone of the photon
        const Particles& fs = apply<FinalState>(event, "FS").particles();
        FourMomentum mom_in_EtCone;
        for (const Particle& p : fs) {
          // Reject if not in cone
          if (deltaR(photon, p) > 0.4) continue;
          // Reject if in the 5x7 cell central core
          if (fabs(deltaEta(photon, p)) < 0.025 * 5 * 0.5 &&
              fabs(deltaPhi(photon, p)) < PI/128. * 7 * 0.5) continue;
          // Sum momentum
          mom_in_EtCone += p.momentum();
        }
        // Now figure out the correction (area*density)
        const double ETCONE_AREA = PI*sqr(0.4) - (7*.025)*(5*PI/128.); // cone area - central core rectangle
        const double correction = vptDensity[binIndex(photon.abseta(), _eta_bins_areaoffset)] * ETCONE_AREA;

        // Discard the photon if there is more than 4 GeV of cone activity
        // NOTE: Shouldn't need to subtract photon itself (it's in the central core)
        // NOTE: using expected cut at hadron/particle level, not at reco level
        if (mom_in_EtCone.Et() - correction > 4*GeV) continue;
        // Add isolated photon to list
        isolated_photons.push_back(photon);
      }

      // Require at least two isolated photons and select leading pT pair
      if (isolated_photons.size() < 2) vetoEvent;
      sortByPt(isolated_photons);
      const FourMomentum& y1 = isolated_photons[0].momentum();
      const FourMomentum& y2 = isolated_photons[1].momentum();

      // Leading photon should have pT > 25 GeV
      if (y1.pT() < 25*GeV) vetoEvent;

      // Require the two photons to be separated by dR > 0.4
      if (deltaR(y1, y2) < 0.4) vetoEvent;

      // Compute diphoton vector and fill histos
      FourMomentum yy = y1 + y2;
      const double costhetayy = 2 * y1.pT() * y2.pT() * sinh(y1.eta() - y2.eta()) / yy.mass() / add_quad(yy.mass(), yy.pT());
      _h_M->fill(yy.mass()/GeV);
      _h_pT->fill(yy.pT()/GeV);
      _h_dPhi->fill(mapAngle0ToPi(y1.phi() - y2.phi()));
      _h_cosThetaStar->fill(costhetayy);
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      scale(_h_M, crossSection()/sumOfWeights());
      scale(_h_pT, crossSection()/sumOfWeights());
      scale(_h_dPhi, crossSection()/sumOfWeights());
      scale(_h_cosThetaStar, crossSection()/sumOfWeights());
    }


  private:

    Histo1DPtr _h_M, _h_pT, _h_dPhi, _h_cosThetaStar;

    const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0};

  };


  RIVET_DECLARE_PLUGIN(ATLAS_2012_I1199269);

}