1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
namespace Rivet {
/// @brief Measurement of isolated diphoton + X differential cross-sections
///
/// Inclusive isolated gamma gamma cross-sections, differential in M(gg), pT(gg),
/// dphi(gg), cos(theta*)_CS
///
/// @author Giovanni Marchiori
///
class ATLAS_2012_I1199269 : public Analysis {
public:
/// Constructor
ATLAS_2012_I1199269()
: Analysis("ATLAS_2012_I1199269")
{ }
/// Book histograms and initialise projections before the run
void init() {
FinalState fs;
declare(fs, "FS");
FastJets fj(fs, FastJets::KT, 0.5);
fj.useJetArea(new fastjet::AreaDefinition(fastjet::VoronoiAreaSpec()));
declare(fj, "KtJetsD05");
IdentifiedFinalState photonfs(Cuts::abseta < 2.37 && Cuts::pT > 22*GeV);
photonfs.acceptId(PID::PHOTON);
declare(photonfs, "Photon");
book(_h_M ,1, 1, 1);
book(_h_pT ,2, 1, 1);
book(_h_dPhi ,3, 1, 1);
book(_h_cosThetaStar ,4, 1, 1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Require at least 2 photons in final state
const Particles photons = apply<IdentifiedFinalState>(event, "Photon").particlesByPt();
if (photons.size() < 2) vetoEvent;
// Get jets, and corresponding jet areas
vector<vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
const auto clust_seq_area = apply<FastJets>(event, "KtJetsD05").clusterSeqArea();
for (const Jet& jet : apply<FastJets>(event, "KtJetsD05").jets()) {
const double area = clust_seq_area->area(jet); // implicit .pseudojet()
if (area < 1e-3) continue;
const int ieta = binIndex(jet.abseta(), _eta_bins_areaoffset);
if (ieta != -1) ptDensities[ieta].push_back(jet.pT()/area);
}
// Compute median jet properties over the jets in the event
vector<double> vptDensity; //, vsigma, vNjets;
for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; ++b) {
vptDensity += ptDensities[b].empty() ? 0 : median(ptDensities[b]);
}
// Loop over photons and fill vector of isolated ones
Particles isolated_photons;
for (const Particle& photon : photons) {
/// Remove photons in ECAL crack region
if (inRange(photon.abseta(), 1.37, 1.52)) continue;
// Compute isolation via particles within an R=0.4 cone of the photon
const Particles& fs = apply<FinalState>(event, "FS").particles();
FourMomentum mom_in_EtCone;
for (const Particle& p : fs) {
// Reject if not in cone
if (deltaR(photon, p) > 0.4) continue;
// Reject if in the 5x7 cell central core
if (fabs(deltaEta(photon, p)) < 0.025 * 5 * 0.5 &&
fabs(deltaPhi(photon, p)) < PI/128. * 7 * 0.5) continue;
// Sum momentum
mom_in_EtCone += p.momentum();
}
// Now figure out the correction (area*density)
const double ETCONE_AREA = PI*sqr(0.4) - (7*.025)*(5*PI/128.); // cone area - central core rectangle
const double correction = vptDensity[binIndex(photon.abseta(), _eta_bins_areaoffset)] * ETCONE_AREA;
// Discard the photon if there is more than 4 GeV of cone activity
// NOTE: Shouldn't need to subtract photon itself (it's in the central core)
// NOTE: using expected cut at hadron/particle level, not at reco level
if (mom_in_EtCone.Et() - correction > 4*GeV) continue;
// Add isolated photon to list
isolated_photons.push_back(photon);
}
// Require at least two isolated photons and select leading pT pair
if (isolated_photons.size() < 2) vetoEvent;
sortByPt(isolated_photons);
const FourMomentum& y1 = isolated_photons[0].momentum();
const FourMomentum& y2 = isolated_photons[1].momentum();
// Leading photon should have pT > 25 GeV
if (y1.pT() < 25*GeV) vetoEvent;
// Require the two photons to be separated by dR > 0.4
if (deltaR(y1, y2) < 0.4) vetoEvent;
// Compute diphoton vector and fill histos
FourMomentum yy = y1 + y2;
const double costhetayy = 2 * y1.pT() * y2.pT() * sinh(y1.eta() - y2.eta()) / yy.mass() / add_quad(yy.mass(), yy.pT());
_h_M->fill(yy.mass()/GeV);
_h_pT->fill(yy.pT()/GeV);
_h_dPhi->fill(mapAngle0ToPi(y1.phi() - y2.phi()));
_h_cosThetaStar->fill(costhetayy);
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h_M, crossSection()/sumOfWeights());
scale(_h_pT, crossSection()/sumOfWeights());
scale(_h_dPhi, crossSection()/sumOfWeights());
scale(_h_cosThetaStar, crossSection()/sumOfWeights());
}
private:
Histo1DPtr _h_M, _h_pT, _h_dPhi, _h_cosThetaStar;
const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0};
};
RIVET_DECLARE_PLUGIN(ATLAS_2012_I1199269);
}
|