1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/FastJets.hh"
namespace Rivet {
class ATLAS_2012_I1204447 : public Analysis {
public:
/// Constructor
ATLAS_2012_I1204447()
: Analysis("ATLAS_2012_I1204447") { }
/// Book histograms and initialise projections before the run
void init() {
// To calculate the acceptance without having the fiducial lepton efficiencies included, this part can be turned off
_use_fiducial_lepton_efficiency = true;
// Random numbers for simulation of ATLAS detector reconstruction efficiency
srand(160385);
// Read in all signal regions
_signal_regions = getSignalRegions();
// Set number of events per signal region to 0
for (size_t i = 0; i < _signal_regions.size(); i++)
book(_eventCountsPerSR[_signal_regions[i]], "_eventCountsPerSR_" + _signal_regions[i]);
// Final state including all charged and neutral particles
const FinalState fs((Cuts::etaIn(-5.0, 5.0) && Cuts::pT >= 1*GeV));
declare(fs, "FS");
// Final state including all charged particles
declare(ChargedFinalState(Cuts::abseta < 2.5 && Cuts::pT > 1*GeV), "CFS");
// Final state including all visible particles (to calculate MET, Jets etc.)
declare(VisibleFinalState(Cuts::abseta < 5.0), "VFS");
// Final state including all AntiKt 04 Jets
VetoedFinalState vfs;
vfs.addVetoPairId(PID::MUON);
declare(FastJets(vfs, FastJets::ANTIKT, 0.4), "AntiKtJets04");
// Final state including all unstable particles (including taus)
declare(UnstableParticles(Cuts::abseta < 5.0 && Cuts::pT > 5*GeV), "UFS");
// Final state including all electrons
IdentifiedFinalState elecs(Cuts::abseta < 2.47 && Cuts::pT > 10*GeV);
elecs.acceptIdPair(PID::ELECTRON);
declare(elecs, "elecs");
// Final state including all muons
IdentifiedFinalState muons(Cuts::abseta < 2.5 && Cuts::pT > 10*GeV);
muons.acceptIdPair(PID::MUON);
declare(muons, "muons");
// Book histograms
book(_h_HTlep_all ,"HTlep_all" , 30, 0, 1500);
book(_h_HTjets_all ,"HTjets_all", 30, 0, 1500);
book(_h_MET_all ,"MET_all" , 20, 0, 1000);
book(_h_Meff_all ,"Meff_all" , 30, 0, 3000);
book(_h_e_n ,"e_n" , 10, -0.5, 9.5);
book(_h_mu_n ,"mu_n" , 10, -0.5, 9.5);
book(_h_tau_n ,"tau_n", 10, -0.5, 9.5);
book(_h_pt_1_3l ,"pt_1_3l", 100, 0, 2000);
book(_h_pt_2_3l ,"pt_2_3l", 100, 0, 2000);
book(_h_pt_3_3l ,"pt_3_3l", 100, 0, 2000);
book(_h_pt_1_2ltau ,"pt_1_2ltau", 100, 0, 2000);
book(_h_pt_2_2ltau ,"pt_2_2ltau", 100, 0, 2000);
book(_h_pt_3_2ltau ,"pt_3_2ltau", 100, 0, 2000);
book(_h_excluded ,"excluded", 2, -0.5, 1.5);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Muons
Particles muon_candidates;
const Particles charged_tracks = apply<ChargedFinalState>(event, "CFS").particles();
const Particles visible_particles = apply<VisibleFinalState>(event, "VFS").particles();
for (const Particle& mu : apply<IdentifiedFinalState>(event, "muons").particlesByPt()) {
// Calculate pTCone30 variable (pT of all tracks within dR<0.3 - pT of muon itself)
double pTinCone = -mu.pT();
for (const Particle& track : charged_tracks) {
if (deltaR(mu.momentum(), track.momentum()) < 0.3)
pTinCone += track.pT();
}
// Calculate eTCone30 variable (pT of all visible particles within dR<0.3)
double eTinCone = 0.;
for (const Particle& visible_particle : visible_particles) {
if (visible_particle.abspid() != PID::MUON && inRange(deltaR(mu.momentum(), visible_particle.momentum()), 0.1, 0.3))
eTinCone += visible_particle.pT();
}
// Apply reconstruction efficiency and simulate reco
int muon_id = 13;
if ( mu.hasAncestor(15) || mu.hasAncestor(-15)) muon_id = 14;
const double eff = (_use_fiducial_lepton_efficiency) ? apply_reco_eff(muon_id, mu) : 1.0;
const bool keep_muon = rand()/static_cast<double>(RAND_MAX) <= eff;
// Keep muon if pTCone30/pT < 0.15 and eTCone30/pT < 0.2 and reconstructed
if (keep_muon && pTinCone/mu.pT() <= 0.15 && eTinCone/mu.pT() < 0.2)
muon_candidates.push_back(mu);
}
// Electrons
Particles electron_candidates;
for (const Particle& e : apply<IdentifiedFinalState>(event, "elecs").particlesByPt()) {
// Neglect electrons in crack regions
if (inRange(e.abseta(), 1.37, 1.52)) continue;
// Calculate pTCone30 variable (pT of all tracks within dR<0.3 - pT of electron itself)
double pTinCone = -e.pT();
for (const Particle& track : charged_tracks) {
if (deltaR(e.momentum(), track.momentum()) < 0.3) pTinCone += track.pT();
}
// Calculate eTCone30 variable (pT of all visible particles (except muons) within dR<0.3)
double eTinCone = 0.;
for (const Particle& visible_particle : visible_particles) {
if (visible_particle.abspid() != PID::MUON && inRange(deltaR(e.momentum(), visible_particle.momentum()), 0.1, 0.3))
eTinCone += visible_particle.pT();
}
// Apply reconstruction efficiency and simulate reco
int elec_id = 11;
if (e.hasAncestor(15) || e.hasAncestor(-15)) elec_id = 12;
const double eff = (_use_fiducial_lepton_efficiency) ? apply_reco_eff(elec_id, e) : 1.0;
const bool keep_elec = rand()/static_cast<double>(RAND_MAX) <= eff;
// Keep electron if pTCone30/pT < 0.13 and eTCone30/pT < 0.2 and reconstructed
if (keep_elec && pTinCone/e.pT() <= 0.13 && eTinCone/e.pT() < 0.2)
electron_candidates.push_back(e);
}
// Taus
/// @todo This could benefit from a tau finder projection
Particles tau_candidates;
for (const Particle& tau : apply<UnstableParticles>(event, "UFS").particlesByPt()) {
// Only pick taus out of all unstable particles
if (tau.abspid() != PID::TAU) continue;
// Check that tau has decayed into daughter particles
/// @todo Huh? Unstable taus with no decay vtx? Can use Particle.isStable()? But why in this situation?
if (tau.genParticle()->end_vertex() == 0) continue;
// Calculate visible tau pT from pT of tau neutrino in tau decay for pT and |eta| cuts
FourMomentum daughter_tau_neutrino_momentum = get_tau_neutrino_mom(tau);
Particle tau_vis = tau;
tau_vis.setMomentum(tau.momentum()-daughter_tau_neutrino_momentum);
// keep only taus in certain eta region and above 15 GeV of visible tau pT
if ( tau_vis.pT() <= 15.0*GeV || tau_vis.abseta() > 2.5) continue;
// Get prong number (number of tracks) in tau decay and check if tau decays leptonically
unsigned int nprong = 0;
bool lep_decaying_tau = false;
get_prong_number(tau.genParticle(), nprong, lep_decaying_tau);
// Apply reconstruction efficiency
int tau_id = 15;
if (nprong == 1) tau_id = 15;
else if (nprong == 3) tau_id = 16;
// Get fiducial lepton efficiency simulate reco efficiency
const double eff = (_use_fiducial_lepton_efficiency) ? apply_reco_eff(tau_id, tau_vis) : 1.0;
const bool keep_tau = rand()/static_cast<double>(RAND_MAX) <= eff;
// Keep tau if nprong = 1, it decays hadronically, and it's reconstructed by the detector
if ( !lep_decaying_tau && nprong == 1 && keep_tau) tau_candidates.push_back(tau_vis);
}
// Jets (all anti-kt R=0.4 jets with pT > 25 GeV and eta < 4.9)
Jets jet_candidates;
for (const Jet& jet : apply<FastJets>(event, "AntiKtJets04").jetsByPt(25*GeV)) {
if (jet.abseta() < 4.9) jet_candidates.push_back(jet);
}
// ETmiss
Particles vfs_particles = apply<VisibleFinalState>(event, "VFS").particles();
FourMomentum pTmiss;
for (const Particle& p : vfs_particles) pTmiss -= p.momentum();
double eTmiss = pTmiss.pT()/GeV;
//------------------
// Overlap removal
// electron - electron
Particles electron_candidates_2;
for (size_t ie = 0; ie < electron_candidates.size(); ++ie) {
const Particle & e = electron_candidates[ie];
bool away = true;
// If electron pair within dR < 0.1: remove electron with lower pT
for (size_t ie2=0; ie2 < electron_candidates_2.size(); ++ie2) {
if ( deltaR( e.momentum(), electron_candidates_2[ie2].momentum()) < 0.1 ) {
away = false;
break;
}
}
// If isolated keep it
if ( away )
electron_candidates_2.push_back( e );
}
// jet - electron
Jets recon_jets;
for (const Jet& jet : jet_candidates) {
bool away = true;
// if jet within dR < 0.2 of electron: remove jet
for (const Particle& e : electron_candidates_2) {
if (deltaR(e.momentum(), jet.momentum()) < 0.2) {
away = false;
break;
}
}
// jet - tau
if (away) {
// If jet within dR < 0.2 of tau: remove jet
for (const Particle& tau : tau_candidates) {
if (deltaR(tau.momentum(), jet.momentum()) < 0.2) {
away = false;
break;
}
}
}
// If isolated keep it
if ( away )
recon_jets.push_back( jet );
}
// electron - jet
Particles recon_leptons, recon_e;
for (size_t ie = 0; ie < electron_candidates_2.size(); ++ie) {
const Particle& e = electron_candidates_2[ie];
// If electron within 0.2 < dR < 0.4 from any jets: remove electron
bool away = true;
for (const Jet& jet : recon_jets) {
if (deltaR(e.momentum(), jet.momentum()) < 0.4) {
away = false;
break;
}
}
// electron - muon
// if electron within dR < 0.1 of a muon: remove electron
if (away) {
for (const Particle& mu : muon_candidates) {
if (deltaR(mu.momentum(), e.momentum()) < 0.1) {
away = false;
break;
}
}
}
// If isolated keep it
if (away) {
recon_e += e;
recon_leptons += e;
}
}
// tau - electron
Particles recon_tau;
for ( const Particle& tau : tau_candidates ) {
bool away = true;
// If tau within dR < 0.2 of an electron: remove tau
for ( const Particle& e : recon_e ) {
if (deltaR( tau.momentum(), e.momentum()) < 0.2) {
away = false;
break;
}
}
// tau - muon
// If tau within dR < 0.2 of a muon: remove tau
if (away) {
for (const Particle& mu : muon_candidates) {
if (deltaR(tau.momentum(), mu.momentum()) < 0.2) {
away = false;
break;
}
}
}
// If isolated keep it
if (away) recon_tau.push_back( tau );
}
// Muon - jet isolation
Particles recon_mu, trigger_mu;
// If muon within dR < 0.4 of a jet, remove muon
for (const Particle& mu : muon_candidates) {
bool away = true;
for (const Jet& jet : recon_jets) {
if ( deltaR( mu.momentum(), jet.momentum()) < 0.4 ) {
away = false;
break;
}
}
if (away) {
recon_mu.push_back( mu );
recon_leptons.push_back( mu );
if (mu.abseta() < 2.4) trigger_mu.push_back( mu );
}
}
// End overlap removal
//------------------
// Jet cleaning
if (rand()/static_cast<double>(RAND_MAX) <= 0.42) {
for (const Jet& jet : recon_jets) {
const double eta = jet.rapidity();
const double phi = jet.azimuthalAngle(MINUSPI_PLUSPI);
if (jet.pT() > 25*GeV && inRange(eta, -0.1, 1.5) && inRange(phi, -0.9, -0.5)) vetoEvent;
}
}
// Post-isolation event cuts
// Require at least 3 charged tracks in event
if (charged_tracks.size() < 3) vetoEvent;
// And at least one e/mu passing trigger
if (!( !recon_e .empty() && recon_e[0] .pT() > 25*GeV) &&
!( !trigger_mu.empty() && trigger_mu[0].pT() > 25*GeV) ) {
MSG_DEBUG("Hardest lepton fails trigger");
vetoEvent;
}
// And only accept events with at least 2 electrons and muons and at least 3 leptons in total
if (recon_mu.size() + recon_e.size() + recon_tau.size() < 3 || recon_leptons.size() < 2) vetoEvent;
// Sort leptons by decreasing pT
sortByPt(recon_leptons);
sortByPt(recon_tau);
// Calculate HTlep, fill lepton pT histograms & store chosen combination of 3 leptons
double HTlep = 0.;
Particles chosen_leptons;
if ( recon_leptons.size() > 2 ) {
_h_pt_1_3l->fill(recon_leptons[0].perp()/GeV);
_h_pt_2_3l->fill(recon_leptons[1].perp()/GeV);
_h_pt_3_3l->fill(recon_leptons[2].perp()/GeV);
HTlep = (recon_leptons[0].pT() + recon_leptons[1].pT() + recon_leptons[2].pT())/GeV;
chosen_leptons.push_back( recon_leptons[0] );
chosen_leptons.push_back( recon_leptons[1] );
chosen_leptons.push_back( recon_leptons[2] );
}
else {
_h_pt_1_2ltau->fill(recon_leptons[0].perp()/GeV);
_h_pt_2_2ltau->fill(recon_leptons[1].perp()/GeV);
_h_pt_3_2ltau->fill(recon_tau[0].perp()/GeV);
HTlep = (recon_leptons[0].pT() + recon_leptons[1].pT() + recon_tau[0].pT())/GeV ;
chosen_leptons.push_back( recon_leptons[0] );
chosen_leptons.push_back( recon_leptons[1] );
chosen_leptons.push_back( recon_tau[0] );
}
// Number of prompt e/mu and had taus
_h_e_n ->fill(recon_e.size());
_h_mu_n ->fill(recon_mu.size());
_h_tau_n->fill(recon_tau.size());
// Calculate HTjets
double HTjets = 0.;
for ( const Jet & jet : recon_jets )
HTjets += jet.perp()/GeV;
// Calculate meff
double meff = eTmiss + HTjets;
Particles all_leptons;
for ( const Particle & e : recon_e ) {
meff += e.perp()/GeV;
all_leptons.push_back( e );
}
for ( const Particle & mu : recon_mu ) {
meff += mu.perp()/GeV;
all_leptons.push_back( mu );
}
for ( const Particle & tau : recon_tau ) {
meff += tau.perp()/GeV;
all_leptons.push_back( tau );
}
// Fill histogram of kinematic variables
_h_HTlep_all ->fill(HTlep);
_h_HTjets_all->fill(HTjets);
_h_MET_all ->fill(eTmiss);
_h_Meff_all ->fill(meff);
// Determine signal region (3l/2ltau, onZ/offZ)
string basic_signal_region;
if ( recon_mu.size() + recon_e.size() > 2 )
basic_signal_region += "3l_";
else if ( (recon_mu.size() + recon_e.size() == 2) && (recon_tau.size() > 0))
basic_signal_region += "2ltau_";
// Is there an OSSF pair or a three lepton combination with an invariant mass close to the Z mass
int onZ = isonZ(chosen_leptons);
if (onZ == 1) basic_signal_region += "onZ";
else if (onZ == 0) basic_signal_region += "offZ";
// Check in which signal regions this event falls and adjust event counters
fillEventCountsPerSR(basic_signal_region, onZ, HTlep, eTmiss, HTjets, meff);
}
/// Normalise histograms etc., after the run
void finalize() {
// Normalize to an integrated luminosity of 1 fb-1
double norm = crossSection()/femtobarn/sumOfWeights();
string best_signal_region = "";
double ratio_best_SR = 0.;
// Loop over all signal regions and find signal region with best sensitivity (ratio signal events/visible cross-section)
for (size_t i = 0; i < _signal_regions.size(); i++) {
double signal_events = _eventCountsPerSR[_signal_regions[i]]->val() * norm;
// Use expected upper limits to find best signal region
double UL95 = getUpperLimit(_signal_regions[i], false);
double ratio = signal_events / UL95;
if (ratio > ratio_best_SR) {
best_signal_region = _signal_regions[i];
ratio_best_SR = ratio;
}
}
double signal_events_best_SR = _eventCountsPerSR[best_signal_region]->val() * norm;
double exp_UL_best_SR = getUpperLimit(best_signal_region, false);
double obs_UL_best_SR = getUpperLimit(best_signal_region, true);
// Print out result
cout << "----------------------------------------------------------------------------------------" << endl;
cout << "Best signal region: " << best_signal_region << endl;
cout << "Normalized number of signal events in this best signal region (per fb-1): " << signal_events_best_SR << endl;
cout << "Efficiency*Acceptance: " << _eventCountsPerSR[best_signal_region]->val()/sumOfWeights() << endl;
cout << "Cross-section [fb]: " << crossSection()/femtobarn << endl;
cout << "Expected visible cross-section (per fb-1): " << exp_UL_best_SR << endl;
cout << "Ratio (signal events / expected visible cross-section): " << ratio_best_SR << endl;
cout << "Observed visible cross-section (per fb-1): " << obs_UL_best_SR << endl;
cout << "Ratio (signal events / observed visible cross-section): " << signal_events_best_SR/obs_UL_best_SR << endl;
cout << "----------------------------------------------------------------------------------------" << endl;
cout << "Using the EXPECTED limits (visible cross-section) of the analysis: " << endl;
if (signal_events_best_SR > exp_UL_best_SR) {
cout << "Since the number of signal events > the visible cross-section, this model/grid point is EXCLUDED with 95% CL." << endl;
_h_excluded->fill(1);
}
else {
cout << "Since the number of signal events < the visible cross-section, this model/grid point is NOT EXCLUDED." << endl;
_h_excluded->fill(0);
}
cout << "----------------------------------------------------------------------------------------" << endl;
cout << "Using the OBSERVED limits (visible cross-section) of the analysis: " << endl;
if (signal_events_best_SR > obs_UL_best_SR) {
cout << "Since the number of signal events > the visible cross-section, this model/grid point is EXCLUDED with 95% CL." << endl;
_h_excluded->fill(1);
}
else {
cout << "Since the number of signal events < the visible cross-section, this model/grid point is NOT EXCLUDED." << endl;
_h_excluded->fill(0);
}
cout << "----------------------------------------------------------------------------------------" << endl;
// Normalize to cross section
if (norm != 0) {
scale(_h_HTlep_all, norm);
scale(_h_HTjets_all, norm);
scale(_h_MET_all, norm);
scale(_h_Meff_all, norm);
scale(_h_pt_1_3l, norm);
scale(_h_pt_2_3l, norm);
scale(_h_pt_3_3l, norm);
scale(_h_pt_1_2ltau, norm);
scale(_h_pt_2_2ltau, norm);
scale(_h_pt_3_2ltau, norm);
scale(_h_e_n, norm);
scale(_h_mu_n, norm);
scale(_h_tau_n, norm);
scale(_h_excluded, signal_events_best_SR);
}
}
/// Helper functions
//@{
/// Function giving a list of all signal regions
vector<string> getSignalRegions() {
// List of basic signal regions
vector<string> basic_signal_regions;
basic_signal_regions.push_back("3l_offZ");
basic_signal_regions.push_back("3l_onZ");
basic_signal_regions.push_back("2ltau_offZ");
basic_signal_regions.push_back("2ltau_onZ");
// List of kinematic variables
vector<string> kinematic_variables;
kinematic_variables.push_back("HTlep");
kinematic_variables.push_back("METStrong");
kinematic_variables.push_back("METWeak");
kinematic_variables.push_back("Meff");
kinematic_variables.push_back("MeffStrong");
vector<string> signal_regions;
// Loop over all kinematic variables and basic signal regions
for (size_t i0 = 0; i0 < kinematic_variables.size(); i0++) {
for (size_t i1 = 0; i1 < basic_signal_regions.size(); i1++) {
// Is signal region onZ?
int onZ = (basic_signal_regions[i1].find("onZ") != string::npos) ? 1 : 0;
// Get cut values for this kinematic variable
vector<int> cut_values = getCutsPerSignalRegion(kinematic_variables[i0], onZ);
// Loop over all cut values
for (size_t i2 = 0; i2 < cut_values.size(); i2++) {
// push signal region into vector
signal_regions.push_back( (kinematic_variables[i0] + "_" + basic_signal_regions[i1] + "_cut_" + toString(i2)) );
}
}
}
return signal_regions;
}
/// Function giving all cut vales per kinematic variable (taking onZ for MET into account)
vector<int> getCutsPerSignalRegion(const string& signal_region, int onZ=0) {
vector<int> cutValues;
// Cut values for HTlep
if (signal_region.compare("HTlep") == 0) {
cutValues.push_back(0);
cutValues.push_back(100);
cutValues.push_back(150);
cutValues.push_back(200);
cutValues.push_back(300);
}
// Cut values for METStrong (HTjets > 100 GeV) and METWeak (HTjets < 100 GeV)
else if (signal_region.compare("METStrong") == 0 || signal_region.compare("METWeak") == 0) {
if (onZ == 0) cutValues.push_back(0);
else if (onZ == 1) cutValues.push_back(20);
cutValues.push_back(50);
cutValues.push_back(75);
}
// Cut values for Meff and MeffStrong (MET > 75 GeV)
if (signal_region.compare("Meff") == 0 || signal_region.compare("MeffStrong") == 0) {
cutValues.push_back(0);
cutValues.push_back(150);
cutValues.push_back(300);
cutValues.push_back(500);
}
return cutValues;
}
/// function fills map EventCountsPerSR by looping over all signal regions
/// and looking if the event falls into this signal region
void fillEventCountsPerSR(const string& basic_signal_region, int onZ,
double HTlep, double eTmiss,
double HTjets, double meff) {
// Get cut values for HTlep, loop over them and add event if cut is passed
vector<int> cut_values = getCutsPerSignalRegion("HTlep", onZ);
for (size_t i = 0; i < cut_values.size(); i++) {
if (HTlep > cut_values[i])
_eventCountsPerSR[("HTlep_" + basic_signal_region + "_cut_" + toString(cut_values[i]))]->fill();
}
// Get cut values for METStrong, loop over them and add event if cut is passed
cut_values = getCutsPerSignalRegion("METStrong", onZ);
for (size_t i = 0; i < cut_values.size(); i++) {
if (eTmiss > cut_values[i] && HTjets > 100.)
_eventCountsPerSR[("METStrong_" + basic_signal_region + "_cut_" + toString(cut_values[i]))]->fill();
}
// Get cut values for METWeak, loop over them and add event if cut is passed
cut_values = getCutsPerSignalRegion("METWeak", onZ);
for (size_t i = 0; i < cut_values.size(); i++) {
if (eTmiss > cut_values[i] && HTjets <= 100.)
_eventCountsPerSR[("METWeak_" + basic_signal_region + "_cut_" + toString(cut_values[i]))]->fill();
}
// Get cut values for Meff, loop over them and add event if cut is passed
cut_values = getCutsPerSignalRegion("Meff", onZ);
for (size_t i = 0; i < cut_values.size(); i++) {
if (meff > cut_values[i])
_eventCountsPerSR[("Meff_" + basic_signal_region + "_cut_" + toString(cut_values[i]))]->fill();
}
// Get cut values for MeffStrong, loop over them and add event if cut is passed
cut_values = getCutsPerSignalRegion("MeffStrong", onZ);
for (size_t i = 0; i < cut_values.size(); i++) {
if (meff > cut_values[i] && eTmiss > 75.)
_eventCountsPerSR[("MeffStrong_" + basic_signal_region + "_cut_" + toString(cut_values[i]))]->fill();
}
}
/// Function returning 4-vector of daughter-particle if it is a tau neutrino
/// @todo Move to TauFinder and make less HepMC-ish
FourMomentum get_tau_neutrino_mom(const Particle& p) {
assert(p.abspid() == PID::TAU);
ConstGenVertexPtr dv = p.genParticle()->end_vertex();
assert(dv != nullptr);
for(ConstGenParticlePtr pp: HepMCUtils::particles(dv, Relatives::CHILDREN)){
if (abs(pp->pdg_id()) == PID::NU_TAU) return FourMomentum(pp->momentum());
}
return FourMomentum();
}
/// Function calculating the prong number of taus
/// @todo Move to TauFinder and make less HepMC-ish
void get_prong_number(ConstGenParticlePtr p, unsigned int& nprong, bool& lep_decaying_tau) {
assert(p != nullptr);
//const int tau_barcode = p->barcode();
ConstGenVertexPtr dv = p->end_vertex();
assert(dv != nullptr);
for(ConstGenParticlePtr pp: HepMCUtils::particles(dv, Relatives::CHILDREN)){
// If they have status 1 and are charged they will produce a track and the prong number is +1
if (pp->status() == 1 ) {
const int id = pp->pdg_id();
if (Rivet::PID::charge(id) != 0 ) ++nprong;
// Check if tau decays leptonically
// @todo Can a tau decay include a tau in its decay daughters?!
if ((abs(id) == PID::ELECTRON || abs(id) == PID::MUON || abs(id) == PID::TAU) && abs(p->pdg_id()) == PID::TAU) lep_decaying_tau = true;
}
// If the status of the daughter particle is 2 it is unstable and the further decays are checked
else if (pp->status() == 2 ) {
get_prong_number(pp, nprong, lep_decaying_tau);
}
}
}
/// Function giving fiducial lepton efficiency
double apply_reco_eff(int flavor, const Particle& p) {
float pt = p.pT()/GeV;
float eta = p.eta();
double eff = 0.;
//double err = 0.;
if (flavor == 11) { // weight prompt electron -- now including data/MC ID SF in eff.
//float rho = 0.820;
float p0 = 7.34; float p1 = 0.8977;
//float ep0= 0.5 ; float ep1= 0.0087;
eff = p1 - p0/pt;
//double err0 = ep0/pt; // d(eff)/dp0
//double err1 = ep1; // d(eff)/dp1
//err = sqrt(err0*err0 + err1*err1 - 2*rho*err0*err1);
double avgrate = 0.6867;
float wz_ele_eta[] = {0.588717,0.603674,0.666135,0.747493,0.762202,0.675051,0.751606,0.745569,0.665333,0.610432,0.592693,};
//float ewz_ele_eta[] ={0.00292902,0.002476,0.00241209,0.00182319,0.00194339,0.00299785,0.00197339,0.00182004,0.00241793,0.00245997,0.00290394,};
int ibin = 3;
if (eta >= -2.5 && eta < -2.0) ibin = 0;
if (eta >= -2.0 && eta < -1.5) ibin = 1;
if (eta >= -1.5 && eta < -1.0) ibin = 2;
if (eta >= -1.0 && eta < -0.5) ibin = 3;
if (eta >= -0.5 && eta < -0.1) ibin = 4;
if (eta >= -0.1 && eta < 0.1) ibin = 5;
if (eta >= 0.1 && eta < 0.5) ibin = 6;
if (eta >= 0.5 && eta < 1.0) ibin = 7;
if (eta >= 1.0 && eta < 1.5) ibin = 8;
if (eta >= 1.5 && eta < 2.0) ibin = 9;
if (eta >= 2.0 && eta < 2.5) ibin = 10;
double eff_eta = wz_ele_eta[ibin];
//double err_eta = ewz_ele_eta[ibin];
eff = (eff*eff_eta)/avgrate;
}
if (flavor == 12) { // weight electron from tau
//float rho = 0.884;
float p0 = 6.799; float p1 = 0.842;
//float ep0= 0.664; float ep1= 0.016;
eff = p1 - p0/pt;
//double err0 = ep0/pt; // d(eff)/dp0
//double err1 = ep1; // d(eff)/dp1
//err = sqrt(err0*err0 + err1*err1 - 2*rho*err0*err1);
double avgrate = 0.5319;
float wz_elet_eta[] = {0.468945,0.465953,0.489545,0.58709,0.59669,0.515829,0.59284,0.575828,0.498181,0.463536,0.481738,};
//float ewz_elet_eta[] ={0.00933795,0.00780868,0.00792679,0.00642083,0.00692652,0.0101568,0.00698452,0.00643524,0.0080002,0.00776238,0.0094699,};
int ibin = 3;
if (eta >= -2.5 && eta < -2.0) ibin = 0;
if (eta >= -2.0 && eta < -1.5) ibin = 1;
if (eta >= -1.5 && eta < -1.0) ibin = 2;
if (eta >= -1.0 && eta < -0.5) ibin = 3;
if (eta >= -0.5 && eta < -0.1) ibin = 4;
if (eta >= -0.1 && eta < 0.1) ibin = 5;
if (eta >= 0.1 && eta < 0.5) ibin = 6;
if (eta >= 0.5 && eta < 1.0) ibin = 7;
if (eta >= 1.0 && eta < 1.5) ibin = 8;
if (eta >= 1.5 && eta < 2.0) ibin = 9;
if (eta >= 2.0 && eta < 2.5) ibin = 10;
double eff_eta = wz_elet_eta[ibin];
//double err_eta = ewz_elet_eta[ibin];
eff = (eff*eff_eta)/avgrate;
}
if (flavor == 13) {// weight prompt muon
//if eta>0.1
float p0 = -18.21; float p1 = 14.83; float p2 = 0.9312;
//float ep0= 5.06; float ep1= 1.9; float ep2=0.00069;
if ( fabs(eta) < 0.1) {
p0 = 7.459; p1 = 2.615; p2 = 0.5138;
//ep0 = 10.4; ep1 = 4.934; ep2 = 0.0034;
}
double arg = ( pt-p0 )/( 2.*p1 ) ;
eff = 0.5 * p2 * (1.+erf(arg));
//err = 0.1*eff;
}
if (flavor == 14) {// weight muon from tau
if (fabs(eta) < 0.1) {
float p0 = -1.756; float p1 = 12.38; float p2 = 0.4441;
//float ep0= 10.39; float ep1= 7.9; float ep2=0.022;
double arg = ( pt-p0 )/( 2.*p1 ) ;
eff = 0.5 * p2 * (1.+erf(arg));
//err = 0.1*eff;
}
else {
float p0 = 2.102; float p1 = 0.8293;
//float ep0= 0.271; float ep1= 0.0083;
eff = p1 - p0/pt;
//double err0 = ep0/pt; // d(eff)/dp0
//double err1 = ep1; // d(eff)/dp1
//err = sqrt(err0*err0 + err1*err1 - 2*rho*err0*err1);
}
}
if (flavor == 15) {// weight hadronic tau 1p
float wz_tau1p[] = {0.0249278,0.146978,0.225049,0.229212,0.21519,0.206152,0.201559,0.197917,0.209249,0.228336,0.193548,};
//float ewz_tau1p[] ={0.00178577,0.00425252,0.00535052,0.00592126,0.00484684,0.00612941,0.00792099,0.0083006,0.0138307,0.015568,0.0501751,};
int ibin = 0;
if (pt > 15) ibin = 1;
if (pt > 20) ibin = 2;
if (pt > 25) ibin = 3;
if (pt > 30) ibin = 4;
if (pt > 40) ibin = 5;
if (pt > 50) ibin = 6;
if (pt > 60) ibin = 7;
if (pt > 80) ibin = 8;
if (pt > 100) ibin = 9;
if (pt > 200) ibin = 10;
eff = wz_tau1p[ibin];
//err = ewz_tau1p[ibin];
double avgrate = 0.1718;
float wz_tau1p_eta[] = {0.162132,0.176393,0.139619,0.178813,0.185144,0.210027,0.203937,0.178688,0.137034,0.164216,0.163713,};
//float ewz_tau1p_eta[] ={0.00706705,0.00617989,0.00506798,0.00525172,0.00581865,0.00865675,0.00599245,0.00529877,0.00506368,0.00617025,0.00726219,};
ibin = 3;
if (eta >= -2.5 && eta < -2.0) ibin = 0;
if (eta >= -2.0 && eta < -1.5) ibin = 1;
if (eta >= -1.5 && eta < -1.0) ibin = 2;
if (eta >= -1.0 && eta < -0.5) ibin = 3;
if (eta >= -0.5 && eta < -0.1) ibin = 4;
if (eta >= -0.1 && eta < 0.1) ibin = 5;
if (eta >= 0.1 && eta < 0.5) ibin = 6;
if (eta >= 0.5 && eta < 1.0) ibin = 7;
if (eta >= 1.0 && eta < 1.5) ibin = 8;
if (eta >= 1.5 && eta < 2.0) ibin = 9;
if (eta >= 2.0 && eta < 2.5) ibin = 10;
double eff_eta = wz_tau1p_eta[ibin];
//double err_eta = ewz_tau1p_eta[ibin];
eff = (eff*eff_eta)/avgrate;
}
if (flavor == 16) { //weight hadronic tau 3p
float wz_tau3p[] = {0.000587199,0.00247181,0.0013031,0.00280112,};
//float ewz_tau3p[] ={0.000415091,0.000617187,0.000582385,0.00197792,};
int ibin = 0;
if (pt > 15) ibin = 1;
if (pt > 20) ibin = 2;
if (pt > 40) ibin = 3;
if (pt > 80) ibin = 4;
eff = wz_tau3p[ibin];
//err = ewz_tau3p[ibin];
}
return eff;
}
/// Function giving observed upper limit (visible cross-section)
double getUpperLimit(const string& signal_region, bool observed) {
map<string,double> upperLimitsObserved;
upperLimitsObserved["HTlep_3l_offZ_cut_0"] = 11.;
upperLimitsObserved["HTlep_3l_offZ_cut_100"] = 8.7;
upperLimitsObserved["HTlep_3l_offZ_cut_150"] = 4.0;
upperLimitsObserved["HTlep_3l_offZ_cut_200"] = 4.4;
upperLimitsObserved["HTlep_3l_offZ_cut_300"] = 1.6;
upperLimitsObserved["HTlep_2ltau_offZ_cut_0"] = 25.;
upperLimitsObserved["HTlep_2ltau_offZ_cut_100"] = 14.;
upperLimitsObserved["HTlep_2ltau_offZ_cut_150"] = 6.1;
upperLimitsObserved["HTlep_2ltau_offZ_cut_200"] = 3.3;
upperLimitsObserved["HTlep_2ltau_offZ_cut_300"] = 1.2;
upperLimitsObserved["HTlep_3l_onZ_cut_0"] = 48.;
upperLimitsObserved["HTlep_3l_onZ_cut_100"] = 38.;
upperLimitsObserved["HTlep_3l_onZ_cut_150"] = 14.;
upperLimitsObserved["HTlep_3l_onZ_cut_200"] = 7.2;
upperLimitsObserved["HTlep_3l_onZ_cut_300"] = 4.5;
upperLimitsObserved["HTlep_2ltau_onZ_cut_0"] = 85.;
upperLimitsObserved["HTlep_2ltau_onZ_cut_100"] = 53.;
upperLimitsObserved["HTlep_2ltau_onZ_cut_150"] = 11.0;
upperLimitsObserved["HTlep_2ltau_onZ_cut_200"] = 5.2;
upperLimitsObserved["HTlep_2ltau_onZ_cut_300"] = 3.0;
upperLimitsObserved["METStrong_3l_offZ_cut_0"] = 2.6;
upperLimitsObserved["METStrong_3l_offZ_cut_50"] = 2.1;
upperLimitsObserved["METStrong_3l_offZ_cut_75"] = 2.1;
upperLimitsObserved["METStrong_2ltau_offZ_cut_0"] = 4.2;
upperLimitsObserved["METStrong_2ltau_offZ_cut_50"] = 3.1;
upperLimitsObserved["METStrong_2ltau_offZ_cut_75"] = 2.6;
upperLimitsObserved["METStrong_3l_onZ_cut_20"] = 11.0;
upperLimitsObserved["METStrong_3l_onZ_cut_50"] = 6.4;
upperLimitsObserved["METStrong_3l_onZ_cut_75"] = 5.1;
upperLimitsObserved["METStrong_2ltau_onZ_cut_20"] = 5.9;
upperLimitsObserved["METStrong_2ltau_onZ_cut_50"] = 3.4;
upperLimitsObserved["METStrong_2ltau_onZ_cut_75"] = 1.2;
upperLimitsObserved["METWeak_3l_offZ_cut_0"] = 11.;
upperLimitsObserved["METWeak_3l_offZ_cut_50"] = 5.3;
upperLimitsObserved["METWeak_3l_offZ_cut_75"] = 3.1;
upperLimitsObserved["METWeak_2ltau_offZ_cut_0"] = 23.;
upperLimitsObserved["METWeak_2ltau_offZ_cut_50"] = 4.3;
upperLimitsObserved["METWeak_2ltau_offZ_cut_75"] = 3.1;
upperLimitsObserved["METWeak_3l_onZ_cut_20"] = 41.;
upperLimitsObserved["METWeak_3l_onZ_cut_50"] = 16.;
upperLimitsObserved["METWeak_3l_onZ_cut_75"] = 8.0;
upperLimitsObserved["METWeak_2ltau_onZ_cut_20"] = 80.;
upperLimitsObserved["METWeak_2ltau_onZ_cut_50"] = 4.4;
upperLimitsObserved["METWeak_2ltau_onZ_cut_75"] = 1.8;
upperLimitsObserved["Meff_3l_offZ_cut_0"] = 11.;
upperLimitsObserved["Meff_3l_offZ_cut_150"] = 8.1;
upperLimitsObserved["Meff_3l_offZ_cut_300"] = 3.1;
upperLimitsObserved["Meff_3l_offZ_cut_500"] = 2.1;
upperLimitsObserved["Meff_2ltau_offZ_cut_0"] = 25.;
upperLimitsObserved["Meff_2ltau_offZ_cut_150"] = 12.;
upperLimitsObserved["Meff_2ltau_offZ_cut_300"] = 3.9;
upperLimitsObserved["Meff_2ltau_offZ_cut_500"] = 2.2;
upperLimitsObserved["Meff_3l_onZ_cut_0"] = 48.;
upperLimitsObserved["Meff_3l_onZ_cut_150"] = 37.;
upperLimitsObserved["Meff_3l_onZ_cut_300"] = 11.;
upperLimitsObserved["Meff_3l_onZ_cut_500"] = 4.8;
upperLimitsObserved["Meff_2ltau_onZ_cut_0"] = 85.;
upperLimitsObserved["Meff_2ltau_onZ_cut_150"] = 28.;
upperLimitsObserved["Meff_2ltau_onZ_cut_300"] = 5.9;
upperLimitsObserved["Meff_2ltau_onZ_cut_500"] = 1.9;
upperLimitsObserved["MeffStrong_3l_offZ_cut_0"] = 3.8;
upperLimitsObserved["MeffStrong_3l_offZ_cut_150"] = 3.8;
upperLimitsObserved["MeffStrong_3l_offZ_cut_300"] = 2.8;
upperLimitsObserved["MeffStrong_3l_offZ_cut_500"] = 2.1;
upperLimitsObserved["MeffStrong_2ltau_offZ_cut_0"] = 3.9;
upperLimitsObserved["MeffStrong_2ltau_offZ_cut_150"] = 4.0;
upperLimitsObserved["MeffStrong_2ltau_offZ_cut_300"] = 2.9;
upperLimitsObserved["MeffStrong_2ltau_offZ_cut_500"] = 1.5;
upperLimitsObserved["MeffStrong_3l_onZ_cut_0"] = 10.0;
upperLimitsObserved["MeffStrong_3l_onZ_cut_150"] = 10.0;
upperLimitsObserved["MeffStrong_3l_onZ_cut_300"] = 6.8;
upperLimitsObserved["MeffStrong_3l_onZ_cut_500"] = 3.9;
upperLimitsObserved["MeffStrong_2ltau_onZ_cut_0"] = 1.6;
upperLimitsObserved["MeffStrong_2ltau_onZ_cut_150"] = 1.4;
upperLimitsObserved["MeffStrong_2ltau_onZ_cut_300"] = 1.5;
upperLimitsObserved["MeffStrong_2ltau_onZ_cut_500"] = 0.9;
// Expected upper limits are also given but not used in this analysis
map<string,double> upperLimitsExpected;
upperLimitsExpected["HTlep_3l_offZ_cut_0"] = 11.;
upperLimitsExpected["HTlep_3l_offZ_cut_100"] = 8.5;
upperLimitsExpected["HTlep_3l_offZ_cut_150"] = 4.6;
upperLimitsExpected["HTlep_3l_offZ_cut_200"] = 3.6;
upperLimitsExpected["HTlep_3l_offZ_cut_300"] = 1.9;
upperLimitsExpected["HTlep_2ltau_offZ_cut_0"] = 23.;
upperLimitsExpected["HTlep_2ltau_offZ_cut_100"] = 14.;
upperLimitsExpected["HTlep_2ltau_offZ_cut_150"] = 6.4;
upperLimitsExpected["HTlep_2ltau_offZ_cut_200"] = 3.6;
upperLimitsExpected["HTlep_2ltau_offZ_cut_300"] = 1.5;
upperLimitsExpected["HTlep_3l_onZ_cut_0"] = 33.;
upperLimitsExpected["HTlep_3l_onZ_cut_100"] = 25.;
upperLimitsExpected["HTlep_3l_onZ_cut_150"] = 12.;
upperLimitsExpected["HTlep_3l_onZ_cut_200"] = 6.5;
upperLimitsExpected["HTlep_3l_onZ_cut_300"] = 3.1;
upperLimitsExpected["HTlep_2ltau_onZ_cut_0"] = 94.;
upperLimitsExpected["HTlep_2ltau_onZ_cut_100"] = 61.;
upperLimitsExpected["HTlep_2ltau_onZ_cut_150"] = 9.9;
upperLimitsExpected["HTlep_2ltau_onZ_cut_200"] = 4.5;
upperLimitsExpected["HTlep_2ltau_onZ_cut_300"] = 1.9;
upperLimitsExpected["METStrong_3l_offZ_cut_0"] = 3.1;
upperLimitsExpected["METStrong_3l_offZ_cut_50"] = 2.4;
upperLimitsExpected["METStrong_3l_offZ_cut_75"] = 2.3;
upperLimitsExpected["METStrong_2ltau_offZ_cut_0"] = 4.8;
upperLimitsExpected["METStrong_2ltau_offZ_cut_50"] = 3.3;
upperLimitsExpected["METStrong_2ltau_offZ_cut_75"] = 2.1;
upperLimitsExpected["METStrong_3l_onZ_cut_20"] = 8.7;
upperLimitsExpected["METStrong_3l_onZ_cut_50"] = 4.9;
upperLimitsExpected["METStrong_3l_onZ_cut_75"] = 3.8;
upperLimitsExpected["METStrong_2ltau_onZ_cut_20"] = 7.3;
upperLimitsExpected["METStrong_2ltau_onZ_cut_50"] = 2.8;
upperLimitsExpected["METStrong_2ltau_onZ_cut_75"] = 1.5;
upperLimitsExpected["METWeak_3l_offZ_cut_0"] = 10.;
upperLimitsExpected["METWeak_3l_offZ_cut_50"] = 4.7;
upperLimitsExpected["METWeak_3l_offZ_cut_75"] = 3.0;
upperLimitsExpected["METWeak_2ltau_offZ_cut_0"] = 21.;
upperLimitsExpected["METWeak_2ltau_offZ_cut_50"] = 4.0;
upperLimitsExpected["METWeak_2ltau_offZ_cut_75"] = 2.6;
upperLimitsExpected["METWeak_3l_onZ_cut_20"] = 30.;
upperLimitsExpected["METWeak_3l_onZ_cut_50"] = 10.;
upperLimitsExpected["METWeak_3l_onZ_cut_75"] = 5.4;
upperLimitsExpected["METWeak_2ltau_onZ_cut_20"] = 88.;
upperLimitsExpected["METWeak_2ltau_onZ_cut_50"] = 5.5;
upperLimitsExpected["METWeak_2ltau_onZ_cut_75"] = 2.2;
upperLimitsExpected["Meff_3l_offZ_cut_0"] = 11.;
upperLimitsExpected["Meff_3l_offZ_cut_150"] = 8.8;
upperLimitsExpected["Meff_3l_offZ_cut_300"] = 3.7;
upperLimitsExpected["Meff_3l_offZ_cut_500"] = 2.1;
upperLimitsExpected["Meff_2ltau_offZ_cut_0"] = 23.;
upperLimitsExpected["Meff_2ltau_offZ_cut_150"] = 13.;
upperLimitsExpected["Meff_2ltau_offZ_cut_300"] = 4.9;
upperLimitsExpected["Meff_2ltau_offZ_cut_500"] = 2.4;
upperLimitsExpected["Meff_3l_onZ_cut_0"] = 33.;
upperLimitsExpected["Meff_3l_onZ_cut_150"] = 25.;
upperLimitsExpected["Meff_3l_onZ_cut_300"] = 9.;
upperLimitsExpected["Meff_3l_onZ_cut_500"] = 3.9;
upperLimitsExpected["Meff_2ltau_onZ_cut_0"] = 94.;
upperLimitsExpected["Meff_2ltau_onZ_cut_150"] = 35.;
upperLimitsExpected["Meff_2ltau_onZ_cut_300"] = 6.8;
upperLimitsExpected["Meff_2ltau_onZ_cut_500"] = 2.5;
upperLimitsExpected["MeffStrong_3l_offZ_cut_0"] = 3.9;
upperLimitsExpected["MeffStrong_3l_offZ_cut_150"] = 3.9;
upperLimitsExpected["MeffStrong_3l_offZ_cut_300"] = 3.0;
upperLimitsExpected["MeffStrong_3l_offZ_cut_500"] = 2.0;
upperLimitsExpected["MeffStrong_2ltau_offZ_cut_0"] = 3.8;
upperLimitsExpected["MeffStrong_2ltau_offZ_cut_150"] = 3.9;
upperLimitsExpected["MeffStrong_2ltau_offZ_cut_300"] = 3.1;
upperLimitsExpected["MeffStrong_2ltau_offZ_cut_500"] = 1.6;
upperLimitsExpected["MeffStrong_3l_onZ_cut_0"] = 6.9;
upperLimitsExpected["MeffStrong_3l_onZ_cut_150"] = 7.1;
upperLimitsExpected["MeffStrong_3l_onZ_cut_300"] = 4.9;
upperLimitsExpected["MeffStrong_3l_onZ_cut_500"] = 3.0;
upperLimitsExpected["MeffStrong_2ltau_onZ_cut_0"] = 2.4;
upperLimitsExpected["MeffStrong_2ltau_onZ_cut_150"] = 2.5;
upperLimitsExpected["MeffStrong_2ltau_onZ_cut_300"] = 2.0;
upperLimitsExpected["MeffStrong_2ltau_onZ_cut_500"] = 1.1;
if (observed) return upperLimitsObserved[signal_region];
else return upperLimitsExpected[signal_region];
}
/// Function checking if there is an OSSF lepton pair or a combination of 3 leptons with an invariant mass close to the Z mass
/// @todo Should the reference Z mass be 91.2?
int isonZ (const Particles& particles) {
int onZ = 0;
double best_mass_2 = 999.;
double best_mass_3 = 999.;
// Loop over all 2 particle combinations to find invariant mass of OSSF pair closest to Z mass
for ( const Particle& p1 : particles ) {
for ( const Particle& p2 : particles ) {
double mass_difference_2_old = fabs(91.0 - best_mass_2);
double mass_difference_2_new = fabs(91.0 - (p1.momentum() + p2.momentum()).mass()/GeV);
// If particle combination is OSSF pair calculate mass difference to Z mass
if ( (p1.pid()*p2.pid() == -121 || p1.pid()*p2.pid() == -169) ) {
// Get invariant mass closest to Z mass
if (mass_difference_2_new < mass_difference_2_old)
best_mass_2 = (p1.momentum() + p2.momentum()).mass()/GeV;
// In case there is an OSSF pair take also 3rd lepton into account (e.g. from FSR and photon to electron conversion)
for ( const Particle & p3 : particles ) {
double mass_difference_3_old = fabs(91.0 - best_mass_3);
double mass_difference_3_new = fabs(91.0 - (p1.momentum() + p2.momentum() + p3.momentum()).mass()/GeV);
if (mass_difference_3_new < mass_difference_3_old)
best_mass_3 = (p1.momentum() + p2.momentum() + p3.momentum()).mass()/GeV;
}
}
}
}
// Pick the minimum invariant mass of the best OSSF pair combination and the best 3 lepton combination
// If this mass is in a 20 GeV window around the Z mass, the event is classified as onZ
double best_mass = min(best_mass_2, best_mass_3);
if (fabs(91.0 - best_mass) < 20) onZ = 1;
return onZ;
}
//@}
private:
/// Histograms
//@{
Histo1DPtr _h_HTlep_all, _h_HTjets_all, _h_MET_all, _h_Meff_all;
Histo1DPtr _h_pt_1_3l, _h_pt_2_3l, _h_pt_3_3l, _h_pt_1_2ltau, _h_pt_2_2ltau, _h_pt_3_2ltau;
Histo1DPtr _h_e_n, _h_mu_n, _h_tau_n;
Histo1DPtr _h_excluded;
//@}
/// Fiducial efficiencies to model the effects of the ATLAS detector
bool _use_fiducial_lepton_efficiency;
/// List of signal regions and event counts per signal region
vector<string> _signal_regions;
map<string, CounterPtr> _eventCountsPerSR;
};
RIVET_DECLARE_PLUGIN(ATLAS_2012_I1204447);
}
|