Rivet Analyses Reference

ATLAS_2012_I943401

Search for supersymmetry with 2 leptons and missing transverse energy
Experiment: ATLAS (LHC)
Inspire ID: 943401
Status: VALIDATED
Authors:
  • Peter Richardson
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • BSM signal events at 7000 GeV.

Results of three searches for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons, electrons or muons. The analysis uses a data sample collected during the first half of 2011 that corresponds to a total integrated luminosity of 1 $\text{fb}^{-1}$ of $\sqrt{s} = 7$\,TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. Opposite-sign and same-sign dilepton events are studied separately. Additionally, in opposite- sign events, a search is made for an excess of same-flavour over different-flavour lepton pairs.

Source code: ATLAS_2012_I943401.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/VetoedFinalState.hh"

namespace Rivet {


  class ATLAS_2012_I943401 : public Analysis {
  public:

    /// @name Constructors etc.
    //@{

    /// Constructor

    ATLAS_2012_I943401()
      : Analysis("ATLAS_2012_I943401")
    {    }

    //@}


  public:

    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // projection to find the electrons
      IdentifiedFinalState elecs(Cuts::abseta < 2.47 && Cuts::pT > 20*GeV);
      elecs.acceptIdPair(PID::ELECTRON);
      declare(elecs, "elecs");

      // projection to find the muons
      IdentifiedFinalState muons(Cuts::abseta < 2.4 && Cuts::pT > 10*GeV);
      muons.acceptIdPair(PID::MUON);
      declare(muons, "muons");

      // jet finder
      VetoedFinalState vfs;
      vfs.addVetoPairId(PID::MUON);
      declare(FastJets(vfs, FastJets::ANTIKT, 0.4), "AntiKtJets04");

      // all tracks (to do deltaR with leptons)
      declare(ChargedFinalState(Cuts::abseta < 3 && Cuts::pT > 0.5*GeV), "cfs");

      // for pTmiss
      declare(VisibleFinalState(Cuts::abseta < 4.5), "vfs");

      // book histograms

      // counts in signal regions
      book(_count_OS_SR1 ,"count_OS_SR1", 1, 0., 1.);
      book(_count_OS_SR2 ,"count_OS_SR2", 1, 0., 1.);
      book(_count_OS_SR3 ,"count_OS_SR3", 1, 0., 1.);
      book(_count_SS_SR1 ,"count_SS_SR1", 1, 0., 1.);
      book(_count_SS_SR2 ,"count_SS_SR2", 1, 0., 1.);
      book(_count_FS_SR1 ,"count_FS_SR1", 1, 0., 1.);
      book(_count_FS_SR2 ,"count_FS_SR2", 1, 0., 1.);
      book(_count_FS_SR3 ,"count_FS_SR3", 1, 0., 1.);

      // histograms from paper

      book(_hist_mll_SS_D         , 1,1,1);
      book(_hist_mll_SS_B         , 1,1,2);
      book(_hist_eTmiss_SS_D      , 2,1,1);
      book(_hist_eTmiss_SS_B      , 2,1,2);
      book(_hist_mll_SS_2Jet_D    , 3,1,1);
      book(_hist_mll_SS_2Jet_B    , 3,1,2);
      book(_hist_njet_SS_D        , 5,1,1);
      book(_hist_njet_SS_B        , 5,1,2);
      book(_hist_pT_j1_SS_D       , 6,1,1);
      book(_hist_pT_j1_SS_B       , 6,1,2);
      book(_hist_pT_j2_SS_D       , 7,1,1);
      book(_hist_pT_j2_SS_B       , 7,1,2);
      book(_hist_pT_l1_SS_D       , 8,1,1);
      book(_hist_pT_l1_SS_B       , 8,1,2);
      book(_hist_pT_l2_SS_D       , 9,1,1);
      book(_hist_pT_l2_SS_B       , 9,1,2);
      book(_hist_mll_OS_D         ,10,1,1);
      book(_hist_mll_OS_B         ,10,1,2);
      book(_hist_eTmiss_OS_D      ,11,1,1);
      book(_hist_eTmiss_OS_B      ,11,1,2);
      book(_hist_eTmiss_3Jet_OS_D ,12,1,1);
      book(_hist_eTmiss_3Jet_OS_B ,12,1,2);
      book(_hist_eTmiss_4Jet_OS_D ,13,1,1);
      book(_hist_eTmiss_4Jet_OS_B ,13,1,2);
      book(_hist_njet_OS_D        ,14,1,1);
      book(_hist_njet_OS_B        ,14,1,2);
      book(_hist_pT_j1_OS_D       ,15,1,1);
      book(_hist_pT_j1_OS_B       ,15,1,2);
      book(_hist_pT_j2_OS_D       ,16,1,1);
      book(_hist_pT_j2_OS_B       ,16,1,2);
      book(_hist_pT_l1_OS_D       ,17,1,1);
      book(_hist_pT_l1_OS_B       ,17,1,2);
      book(_hist_pT_l2_OS_D       ,18,1,1);
      book(_hist_pT_l2_OS_B       ,18,1,2);
      //????
      //   <dataPointSet name="d04-x01-y01" dimension="2" path="/REF/ATLAS_2011_I943401" title="EVENTS/10 GEV" >
      //   <dataPointSet name="d04-x01-y02" dimension="2" path="/REF/ATLAS_2011_I943401" title="EVENTS/10 GEV" >
    }

    /// Perform the event analysis
    void analyze(const Event& event) {
      // get the jet candidates
      Jets cand_jets;
      for (const Jet& jet :
        apply<FastJets>(event, "AntiKtJets04").jetsByPt(20.0*GeV) ) {
        if ( fabs( jet.eta() ) < 2.8 ) {
          cand_jets.push_back(jet);
        }
      }

      // electron candidates
      Particles cand_e =
        apply<IdentifiedFinalState>(event, "elecs").particlesByPt();

      // Discard jets that overlap with electrons
      Jets recon_jets;
      for ( const Jet& jet : cand_jets ) {
        bool away_from_e = true;
          for ( const Particle& e : cand_e ) {
            if ( deltaR(e.momentum(),jet.momentum()) <= 0.2 ) {
              away_from_e = false;
              break;
            }
          }
          if ( away_from_e ) recon_jets.push_back( jet );
      }
      // get the charged tracks for isolation
      Particles chg_tracks =
        apply<ChargedFinalState>(event, "cfs").particles();

      // Reconstructed electrons
      Particles recon_e;
      for ( const Particle& e : cand_e ) {
        // check not near a jet
        bool e_near_jet = false;
        for ( const Jet& jet : recon_jets ) {
          if ( deltaR(e.momentum(),jet.momentum()) < 0.4 ) {
            e_near_jet = true;
            break;
          }
        }
        if ( e_near_jet ) continue;
        // check the isolation
        double pTinCone = -e.pT();
        for ( const Particle& track : chg_tracks ) {
          if ( deltaR(e.momentum(),track.momentum()) < 0.2 )
            pTinCone += track.pT();
        }
        if ( pTinCone < 0.1*e.perp() )
          recon_e.push_back(e);
      }

      // Reconstructed Muons
      Particles recon_mu;
      Particles cand_mu =
        apply<IdentifiedFinalState>(event,"muons").particlesByPt();
      for ( const Particle& mu : cand_mu ) {
        // check not near a jet
        bool mu_near_jet = false;
        for ( const Jet& jet : recon_jets ) {
          if ( deltaR(mu.momentum(),jet.momentum()) < 0.4 ) {
            mu_near_jet = true;
            break;
          }
        }
        if ( mu_near_jet ) continue;
        // isolation
        double pTinCone = -mu.pT();
        for ( const Particle& track : chg_tracks ) {
          if ( deltaR(mu.momentum(),track.momentum()) < 0.2 )
            pTinCone += track.pT();
        }
        if ( pTinCone < 1.8*GeV )
          recon_mu.push_back(mu);
      }

      // pTmiss
      Particles vfs_particles
        = apply<VisibleFinalState>(event, "vfs").particles();
      FourMomentum pTmiss;
      for ( const Particle& p : vfs_particles ) {
        pTmiss -= p.momentum();
      }
      double eTmiss = pTmiss.pT();

      // ATLAS calo problem
      if(rand()/static_cast<double>(RAND_MAX)<=0.42) {
        for ( const Particle& e : recon_e ) {
          double eta = e.eta();
          double phi = e.azimuthalAngle(MINUSPI_PLUSPI);
          if (inRange(eta, -0.1, 1.5) && inRange(phi, -0.9, -0.5)) vetoEvent;
        }
        for ( const Jet& jet : recon_jets ) {
          double eta = jet.rapidity();
          double phi = jet.azimuthalAngle(MINUSPI_PLUSPI);
          if (jet.pT() > 40*GeV && inRange(eta, -0.1, 1.5) && inRange(phi, -0.9, -0.5)) vetoEvent;
        }
      }

      // Exactly two leptons for each event
      if ( recon_mu.size() + recon_e.size() != 2) vetoEvent;
      // two electrons highest pT > 25
      Particles recon_leptons;
      if (recon_e.size()==2 && recon_e[0].pT()>25*GeV) {
        recon_leptons = recon_e;
      }
      // two muons highest pT > 20
      else if (recon_mu.size()==2 && recon_mu[0].pT() > 20*GeV) {
        recon_leptons = recon_mu;
      } else if (recon_e.size()==1 && recon_mu.size()==1 &&
                 (recon_e[0].pT() > 25*GeV || recon_mu[0].pT() > 20*GeV )) {
        if (recon_mu[0].pT() < recon_e[0].pT()) {
          recon_leptons.push_back(recon_e [0]);
          recon_leptons.push_back(recon_mu[0]);
        } else {
          recon_leptons.push_back(recon_mu[0]);
          recon_leptons.push_back(recon_e [0]);
        }
      }
      // fails trigger
      else vetoEvent;

      double mll = (recon_leptons[0].momentum()+recon_leptons[1].momentum()).mass();
      // lepton pair mass > 12.
      if (mll < 12*GeV) vetoEvent;

      // same sign or opposite sign event
      int sign = recon_leptons[0].pid()*recon_leptons[1].pid();

      // same sign leptons
      if(sign>0) {
        _hist_mll_SS_D   ->fill(mll   );
        _hist_mll_SS_B   ->fill(mll   );
        _hist_eTmiss_SS_D->fill(eTmiss);
        _hist_eTmiss_SS_B->fill(eTmiss);
        if(recon_jets.size()>=2) {
          _hist_mll_SS_2Jet_D   ->fill(mll   );
          _hist_mll_SS_2Jet_B   ->fill(mll   );
        }
        _hist_njet_SS_D ->fill(recon_jets.size());
        _hist_njet_SS_B ->fill(recon_jets.size());
        if(!recon_jets.empty()) {
          _hist_pT_j1_SS_D->fill(recon_jets[0].perp());
          _hist_pT_j1_SS_B->fill(recon_jets[0].perp());
        }
        if(recon_jets.size()>2) {
          _hist_pT_j2_SS_D->fill(recon_jets[1].perp());
          _hist_pT_j2_SS_B->fill(recon_jets[1].perp());
        }
        _hist_pT_l1_SS_D->fill(recon_leptons[0].perp());
        _hist_pT_l1_SS_B->fill(recon_leptons[0].perp());
        _hist_pT_l2_SS_D->fill(recon_leptons[1].perp());
        _hist_pT_l2_SS_B->fill(recon_leptons[1].perp());
        // SS-SR1
        if(eTmiss>100.) {
          _count_SS_SR1->fill(0.5);
        }
        // SS-SR2
        if(eTmiss>80. && recon_jets.size()>=2 &&
           recon_jets[1].perp()>50.) {
          _count_SS_SR2->fill(0.5);
        }
      }
      // opposite sign
      else {
        _hist_mll_OS_D->fill(mll   );
        _hist_mll_OS_B->fill(mll   );
        _hist_eTmiss_OS_D->fill(eTmiss);
        _hist_eTmiss_OS_B->fill(eTmiss);
        if(recon_jets.size()>=3){
          _hist_eTmiss_3Jet_OS_D->fill(eTmiss);
          _hist_eTmiss_3Jet_OS_B->fill(eTmiss);
        }
        if(recon_jets.size()>=4){
          _hist_eTmiss_4Jet_OS_D->fill(eTmiss);
          _hist_eTmiss_4Jet_OS_B->fill(eTmiss);
        }
        _hist_njet_OS_D->fill(recon_jets.size());
        _hist_njet_OS_B->fill(recon_jets.size());
        if(!recon_jets.empty()) {
          _hist_pT_j1_OS_D->fill(recon_jets[0].perp());
          _hist_pT_j1_OS_B->fill(recon_jets[0].perp());
        }
        if(recon_jets.size()>2) {
          _hist_pT_j2_OS_D->fill(recon_jets[1].perp());
          _hist_pT_j2_OS_B->fill(recon_jets[1].perp());
        }
        _hist_pT_l1_OS_D->fill(recon_leptons[0].perp());
        _hist_pT_l1_OS_B->fill(recon_leptons[0].perp());
        _hist_pT_l2_OS_D->fill(recon_leptons[1].perp());
        _hist_pT_l2_OS_B->fill(recon_leptons[1].perp());
        // different signal regions
        // OS-SR1
        if(eTmiss>250.) {
          _count_OS_SR1->fill(0.5);
        }
        // OS-SR2
        if(eTmiss>220. && recon_jets.size()>=3 &&
           recon_jets[0].perp()>80. &&
           recon_jets[2].perp()>40.) {
          _count_OS_SR2->fill(0.5);
        }
        // OS-SR3
        if(eTmiss>100. && recon_jets.size()>=4 &&
           recon_jets[0].perp()>100. &&
           recon_jets[3].perp()>70.) {
          _count_OS_SR3->fill(0.5);
        }
        // same flavour analysis
        static const double beta   = 0.75;
        static const double tau_e  = 0.96;
        static const double tau_mu = 0.816;
        double fs_weight = 1.0;
        if (recon_leptons[0].abspid() == PID::ELECTRON && recon_leptons[1].abspid() == PID::ELECTRON) {
          fs_weight /= beta*(1.-sqr(1.-tau_e));
        } else if (recon_leptons[0].abspid() == PID::MUON && recon_leptons[1].abspid()==PID::MUON) {
          fs_weight *= beta/(1.-sqr(1.-tau_mu));
        } else {
          fs_weight /= -(1.-(1.-tau_e)*(1.-tau_mu));
        }
        // FS-SR1
        if(eTmiss>80.&& (mll<80.||mll>100.)) {
          _count_FS_SR1->fill(0.5,fs_weight);
        }
        // FS-SR2
        if(eTmiss>80.&&recon_jets.size()>=2) {
          _count_FS_SR2->fill(0.5,fs_weight);
        }
        // FS-SR3
        if(eTmiss>250.) {
          _count_FS_SR3->fill(0.5,fs_weight);
        }
      }
    }

    //@}


    void finalize() {

      double norm = crossSection()/femtobarn*1.04/sumOfWeights();
      // event counts
      scale(_count_OS_SR1,norm);
      scale(_count_OS_SR2,norm);
      scale(_count_OS_SR3,norm);
      scale(_count_SS_SR1,norm);
      scale(_count_SS_SR2,norm);
      scale(_count_FS_SR1,norm);
      scale(_count_FS_SR2,norm);
      scale(_count_FS_SR3,norm);
      // histograms
      scale(_hist_mll_SS_D     ,norm*20.);
      scale(_hist_mll_SS_B     ,norm*20.);
      scale(_hist_eTmiss_SS_D  ,norm*20.);
      scale(_hist_eTmiss_SS_B  ,norm*20.);
      scale(_hist_mll_SS_2Jet_D,norm*50.);
      scale(_hist_mll_SS_2Jet_B,norm*50.);
      scale(_hist_njet_SS_D    ,norm    );
      scale(_hist_njet_SS_B    ,norm    );
      scale(_hist_pT_j1_SS_D   ,norm*20.);
      scale(_hist_pT_j1_SS_B   ,norm*20.);
      scale(_hist_pT_j2_SS_D   ,norm*20.);
      scale(_hist_pT_j2_SS_B   ,norm*20.);
      scale(_hist_pT_l1_SS_D   ,norm*5. );
      scale(_hist_pT_l1_SS_B   ,norm*5. );
      scale(_hist_pT_l2_SS_D   ,norm*5. );
      scale(_hist_pT_l2_SS_B   ,norm*5. );

      scale(_hist_mll_OS_D        ,norm*10.);
      scale(_hist_mll_OS_B        ,norm*10.);
      scale(_hist_eTmiss_OS_D     ,norm*10.);
      scale(_hist_eTmiss_OS_B     ,norm*10.);
      scale(_hist_eTmiss_3Jet_OS_D,norm*10.);
      scale(_hist_eTmiss_3Jet_OS_B,norm*10.);
      scale(_hist_eTmiss_4Jet_OS_D,norm*10.);
      scale(_hist_eTmiss_4Jet_OS_B,norm*10.);
      scale(_hist_njet_OS_D       ,norm    );
      scale(_hist_njet_OS_B       ,norm    );
      scale(_hist_pT_j1_OS_D      ,norm*20.);
      scale(_hist_pT_j1_OS_B      ,norm*20.);
      scale(_hist_pT_j2_OS_D      ,norm*20.);
      scale(_hist_pT_j2_OS_B      ,norm*20.);
      scale(_hist_pT_l1_OS_D      ,norm*20.);
      scale(_hist_pT_l1_OS_B      ,norm*20.);
      scale(_hist_pT_l2_OS_D      ,norm*20.);
      scale(_hist_pT_l2_OS_B      ,norm*20.);
    }

  private:

    /// @name Histograms
    //@{
    Histo1DPtr _count_OS_SR1;
    Histo1DPtr _count_OS_SR2;
    Histo1DPtr _count_OS_SR3;
    Histo1DPtr _count_SS_SR1;
    Histo1DPtr _count_SS_SR2;
    Histo1DPtr _count_FS_SR1;
    Histo1DPtr _count_FS_SR2;
    Histo1DPtr _count_FS_SR3;

    Histo1DPtr _hist_mll_SS_D;
    Histo1DPtr _hist_mll_SS_B;
    Histo1DPtr _hist_eTmiss_SS_D;
    Histo1DPtr _hist_eTmiss_SS_B;
    Histo1DPtr _hist_mll_SS_2Jet_D;
    Histo1DPtr _hist_mll_SS_2Jet_B;
    Histo1DPtr _hist_njet_SS_D;
    Histo1DPtr _hist_njet_SS_B;
    Histo1DPtr _hist_pT_j1_SS_D;
    Histo1DPtr _hist_pT_j1_SS_B;
    Histo1DPtr _hist_pT_j2_SS_D;
    Histo1DPtr _hist_pT_j2_SS_B;
    Histo1DPtr _hist_pT_l1_SS_D;
    Histo1DPtr _hist_pT_l1_SS_B;
    Histo1DPtr _hist_pT_l2_SS_D;
    Histo1DPtr _hist_pT_l2_SS_B;

    Histo1DPtr _hist_mll_OS_D;
    Histo1DPtr _hist_mll_OS_B;
    Histo1DPtr _hist_eTmiss_OS_D;
    Histo1DPtr _hist_eTmiss_OS_B;
    Histo1DPtr _hist_eTmiss_3Jet_OS_D;
    Histo1DPtr _hist_eTmiss_3Jet_OS_B;
    Histo1DPtr _hist_eTmiss_4Jet_OS_D;
    Histo1DPtr _hist_eTmiss_4Jet_OS_B;
    Histo1DPtr _hist_njet_OS_D ;
    Histo1DPtr _hist_njet_OS_B ;
    Histo1DPtr _hist_pT_j1_OS_D;
    Histo1DPtr _hist_pT_j1_OS_B;
    Histo1DPtr _hist_pT_j2_OS_D;
    Histo1DPtr _hist_pT_j2_OS_B;
    Histo1DPtr _hist_pT_l1_OS_D;
    Histo1DPtr _hist_pT_l1_OS_B;
    Histo1DPtr _hist_pT_l2_OS_D;
    Histo1DPtr _hist_pT_l2_OS_B;
    //@}
  };

  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ATLAS_2012_I943401);

}