1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
namespace Rivet {
/// Differential multijet cross-section measurement in different variables
class ATLAS_2015_I1394679 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2015_I1394679);
/// @name Analysis methods
//@
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections here
const FinalState fs;
declare(fs, "FinalState");
FastJets fj04(fs, FastJets::ANTIKT, 0.4, JetAlg::Muons::ALL, JetAlg::Invisibles::DECAY);
declare(fj04, "AntiKt4jets");
// Histograms
book(_h["pt1"] ,1, 1, 1);
book(_h["pt2"] ,2, 1, 1);
book(_h["pt3"] ,3, 1, 1);
book(_h["pt4"] ,4, 1, 1);
book(_h["HT"] ,5, 1, 1);
book(_h["M4j"] ,6, 1, 1);
// Histograms with different pt/m4j cuts
for (size_t i_hist = 0; i_hist < 4; ++i_hist) {
book(_h["M2jratio_"+to_str(i_hist)] , 7 + i_hist, 1, 1);
book(_h["dPhiMin2j_"+to_str(i_hist)] ,11 + i_hist, 1, 1);
book(_h["dPhiMin3j_"+to_str(i_hist)] ,15 + i_hist, 1, 1);
book(_h["dYMin2j_"+to_str(i_hist)] ,19 + i_hist, 1, 1);
book(_h["dYMin3j_"+to_str(i_hist)] ,23 + i_hist, 1, 1);
book(_h["dYMax2j_"+to_str(i_hist)] ,27 + i_hist, 1, 1);
for (size_t ygap = 0; ygap < 4; ++ygap) {
book(_h["sumPtCent_"+to_str(ygap)+to_str(i_hist)] ,31 + i_hist + ygap * 4, 1, 1);
}
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const Jets& alljetskt4 = apply<FastJets>(event, "AntiKt4jets").jetsByPt(Cuts::pT > 60*GeV && Cuts::absrap < 2.8);
// Require 4 jets with rap < 2.8 and passing pT cuts
int nJets = alljetskt4.size();
if (nJets < 4) vetoEvent;
Jets leadingJetskt4 = alljetskt4; leadingJetskt4.resize(4);
Jet jet1(leadingJetskt4[0]), jet2(leadingJetskt4[1]), jet3(leadingJetskt4[2]), jet4(leadingJetskt4[3]);
if (jet1.pT() < 100*GeV) vetoEvent;
if (jet4.pT() < 64*GeV) vetoEvent;
// dR cut
const double dRcut = 0.65;
double drmin = 9999;
for (int ijet = 0; ijet < 4; ++ijet) {
for (int jjet = ijet + 1; jjet < 4; ++jjet) {
double myDR = deltaR(alljetskt4[ijet], alljetskt4[jjet], RAPIDITY);
if (myDR < drmin) drmin = myDR;
}
}
if (drmin < dRcut) vetoEvent;
// Variables for calculation in loops over jets
FourMomentum sum_alljets;
double HT = 0; // scalar sum of pt of 4 leading jets
double Mjj = 99999; // minimum combined mass of 2 jets
double minDphi_ij = 999, minDphi_ijk = 999; // minimum azimuthal distance btw 2 & 3 jets
double maxDrap_ij = -999; // maximum rapidity distance btw 2 jets
double minDrap_ij = 999, minDrap_ijk = 999; // minimum rapidity distance btw 2 & 3 jets
size_t maxY_i = -1, maxY_j = -1;
// Loop over 4 leading jets
for (size_t ij = 0; ij< 4; ++ij) {
Jet& jeti = leadingJetskt4.at(ij);
sum_alljets += jeti.mom();
HT += jeti.pT();
for (size_t jj = 0; jj< 4; ++jj) {
if ( ij == jj ) continue;
Jet& jetj = leadingJetskt4.at(jj);
const double auxDphi = fabs(deltaPhi(jeti, jetj));
minDphi_ij = std::min(auxDphi, minDphi_ij);
const double auxDrap = fabs(deltaRap(jeti, jetj));
minDrap_ij = std::min(auxDrap, minDrap_ij);
if (auxDrap > maxDrap_ij) {
maxDrap_ij = auxDrap;
maxY_i = ij;
maxY_j = jj;
}
FourMomentum sum_twojets = jeti.mom() + jetj.mom();
Mjj = std::min(Mjj, sum_twojets.mass());
for (size_t kj = 0; kj < 4; ++kj) {
if (kj == ij || kj == jj) continue;
Jet& jetk = leadingJetskt4.at(kj);
const double auxDphi2 = auxDphi + fabs(deltaPhi(jeti, jetk));
minDphi_ijk = std::min(auxDphi2, minDphi_ijk);
const double auxDrap2 = auxDrap + fabs(deltaRap(jeti, jetk));
minDrap_ijk = std::min(auxDrap2, minDrap_ijk);
}
}
} //end loop over 4 leading jets
// Combined mass of 4 leading jets
const double Mjjjj = sum_alljets.mass();
// Sum of central jets pT
double sumpt_twojets_cent = 0; // Scalar sum pt of central jets, with different rapidity gaps
for (size_t ijet = 0; ijet < 4; ++ijet) {
if (ijet == maxY_i || ijet == maxY_j) continue; // these are the forward jets
sumpt_twojets_cent += leadingJetskt4.at(ijet).pT();
}
// Fill histos
// Mass and pT cuts in which the analysis tables are split; values are in GeV and cuts are inclusive
const double m4jcuts[4] = {500, 1000, 1500, 2000};
const double pt1cutA[4] = {100, 400, 700, 1000};
const double pt1cutB[4] = {100, 250, 400, 550};
const double rapGapCut[4] = {1, 2, 3, 4};
_h["pt1"]->fill(jet1.pt());
_h["pt2"]->fill(jet2.pt());
_h["pt3"]->fill(jet3.pt());
_h["pt4"]->fill(jet4.pt());
_h["HT"] ->fill(HT);
_h["M4j"]->fill(Mjjjj);
for (size_t i_cut = 0; i_cut < 4; ++i_cut) {
const string icutstr = to_str(i_cut);
if (Mjjjj > m4jcuts[i_cut])
_h["M2jratio_"+icutstr]->fill( Mjj/Mjjjj );
if (jet1.pT() > pt1cutA[i_cut]) {
_h["dPhiMin2j_"+icutstr]->fill(minDphi_ij );
_h["dPhiMin3j_"+icutstr]->fill(minDphi_ijk);
_h["dYMin2j_"+icutstr]->fill(minDrap_ij );
_h["dYMin3j_"+icutstr]->fill(minDrap_ijk);
}
if (jet1.pt() > pt1cutB[i_cut]) {
_h["dYMax2j_"+icutstr]->fill( maxDrap_ij );
for (size_t yy = 0; yy < 4; ++yy) {
if (maxDrap_ij > rapGapCut[yy])
_h["sumPtCent_"+to_str(yy)+icutstr]->fill(sumpt_twojets_cent);
}
}
} //end loop over pt/m4j cuts
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h, crossSection()/femtobarn / sumOfWeights());
}
//@
private:
/// @name Histograms
//@{
map<string, Histo1DPtr> _h;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(ATLAS_2015_I1394679);
}
|