1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/LeadingParticlesFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
namespace Rivet {
/// Inclusive isolated prompt photon analysis with 2012 LHC data
class ATLAS_2016_I1457605 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2016_I1457605);
/// Book histograms and initialise projections before the run
void init() {
FinalState fs;
declare(fs, "FS");
// Consider the final state jets for the energy density calculation
FastJets fj(fs, FastJets::KT, 0.5);
fj.useJetArea(new fastjet::AreaDefinition(fastjet::VoronoiAreaSpec()));
declare(fj, "KtJetsD05");
// Consider the leading pt photon with |eta| < 2.37 and pT > 25 GeV
LeadingParticlesFinalState photonfs(PromptFinalState(FinalState(Cuts::abseta < 2.37 && Cuts::pT > 25*GeV)));
photonfs.addParticleId(PID::PHOTON);
declare(photonfs, "LeadingPhoton");
// Book the dsigma/dEt (in eta bins) histograms
for (size_t i = 0; i < _eta_bins.size() - 1; ++i) {
if (fuzzyEquals(_eta_bins[i], 1.37)) continue; // skip this bin
int offset = i > 2? 0 : 1;
book(_h_Et_photon[i] ,i + offset, 1, 1);
}
}
/// Return eta bin for either dsigma/dET histogram (area_eta=false) or energy density correction (area_eta=true)
size_t _getEtaBin(double eta_w, bool area_eta) const {
const double eta = fabs(eta_w);
if (!area_eta) {
return binIndex(eta, _eta_bins);
} else {
return binIndex(eta, _eta_bins_areaoffset);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Retrieve leading photon
Particles photons = applyProjection<LeadingParticlesFinalState>(event, "LeadingPhoton").particles();
if (photons.size() < 1) vetoEvent;
const Particle& leadingPhoton = photons[0];
// Veto events with photon in ECAL crack
if (inRange(leadingPhoton.abseta(), 1.37, 1.56)) vetoEvent;
// Compute isolation energy in cone of radius .4 around photon (all particles)
FourMomentum mom_in_EtCone;
Particles fs = applyProjection<FinalState>(event, "FS").particles();
for (const Particle& p : fs) {
// Check if it's outside the cone of 0.4
if (deltaR(leadingPhoton, p) >= 0.4) continue;
// Except muons or neutrinos
if (PID::isNeutrino(p.abspid()) || p.abspid() == PID::MUON) continue;
// Increment isolation energy
mom_in_EtCone += p.momentum();
}
// Remove the photon energy from the isolation
mom_in_EtCone -= leadingPhoton.momentum();
// Get the area-filtered jet inputs for computing median energy density, etc.
vector<double> ptDensity;
vector< vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
const FastJets& fast_jets = applyProjection<FastJets>(event, "KtJetsD05");
const auto clust_seq_area = fast_jets.clusterSeqArea();
for (const Jet& jet : fast_jets.jets()) {
const double area = clust_seq_area->area(jet);
if (area > 1e-3 && jet.abseta() < _eta_bins_areaoffset.back())
ptDensities.at( _getEtaBin(jet.abseta(), true) ) += jet.pT()/area;
}
// Compute the median energy density, etc.
for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; ++b) {
const int njets = ptDensities[b].size();
ptDensity += (njets > 0) ? median(ptDensities[b]) : 0.0;
}
// Compute the isolation energy correction (cone area*energy density)
const double etCone_area = PI * sqr(0.4);
const double correction = ptDensity[_getEtaBin(leadingPhoton.abseta(), true)] * etCone_area;
// Apply isolation cut on area-corrected value
// cut is Etiso < 4.8GeV + 4.2E-03 * Et_gamma.
if (mom_in_EtCone.Et() - correction > 4.8*GeV + 0.0042*leadingPhoton.Et()) vetoEvent;
// Fill histograms
const size_t eta_bin = _getEtaBin(leadingPhoton.abseta(), false);
_h_Et_photon[eta_bin]->fill(leadingPhoton.Et());
}
/// Normalise histograms etc., after the run
void finalize() {
double sf = crossSection() / (picobarn * sumOfWeights());
for (size_t i = 0; i < _eta_bins.size()-1; ++i) {
if (fuzzyEquals(_eta_bins[i], 1.37)) continue;
scale(_h_Et_photon[i], sf);
}
}
private:
Histo1DPtr _h_Et_photon[5];
const vector<double> _eta_bins = {0.00, 0.60, 1.37, 1.56, 1.81, 2.37 };
const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0};
};
RIVET_DECLARE_PLUGIN(ATLAS_2016_I1457605);
}
|