1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/SmearedParticles.hh"
#include "Rivet/Projections/SmearedJets.hh"
#include "Rivet/Projections/SmearedMET.hh"
#include "Rivet/Tools/Cutflow.hh"
namespace Rivet {
/// @brief ATLAS 0-lepton SUSY search with 3.2/fb of 13 TeV pp data
class ATLAS_2016_I1458270 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2016_I1458270);
/// @name Analysis methods
//@{
// method to turn Hist1D into Scatter... so we can write this out witout dividing by bin width
// since the HEPData entry corresponding to this does not divide the refData by bin width!
// Have requested they update their HEPData entry but until they do so, we use this workaround.
Scatter2DPtr convertToScatterWithoutBinWidthDivision(Histo1DPtr input , Scatter2DPtr output ){
for (size_t b = 0; b < input->numBins(); ++b) {
const double x = input->bin(b).xMid();
const double ex = input->bin(b).xWidth()/2.;
const double val = input->bin(b).sumW();
const double err = input->bin(b).relErr() * val;
output->addPoint(x, val, ex, err);
}
return output;
}
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
FinalState calofs(Cuts::abseta < 4.8);
FastJets fj(calofs, FastJets::ANTIKT, 0.4);
declare(fj, "TruthJets");
declare(SmearedJets(fj, JET_SMEAR_ATLAS_RUN2, JET_BTAG_ATLAS_RUN2_MV2C20), "RecoJets");
MissingMomentum mm(calofs);
declare(mm, "TruthMET");
declare(SmearedMET(mm, MET_SMEAR_ATLAS_RUN2), "RecoMET");
PromptFinalState es(Cuts::abseta < 2.47 && Cuts::abspid == PID::ELECTRON, true, true);
declare(es, "TruthElectrons");
declare(SmearedParticles(es, ELECTRON_RECOEFF_ATLAS_RUN2, ELECTRON_SMEAR_ATLAS_RUN2), "RecoElectrons");
PromptFinalState mus(Cuts::abseta < 2.7 && Cuts::abspid == PID::MUON, true);
declare(mus, "TruthMuons");
declare(SmearedParticles(mus, MUON_EFF_ATLAS_RUN2, MUON_SMEAR_ATLAS_RUN2), "RecoMuons");
// Book histograms/counters
book(_h_2jl, "2jl");
book(_h_2jm, "2jm");
book(_h_2jt, "2jt");
book(_h_4jt, "4jt");
book(_h_5j , "5j");
book(_h_6jm, "6jm");
book(_h_6jt, "6jt");
book(_hMeff_2jl, 4,1,1);
book(_hMeff_2jm, 5,1,1);
book(_hMeff_2jt, 6,1,1);
book(_hMeff_4jt, 7,1,1);
book(_hMeff_5j , 8,1,1);
book(_hMeff_6jm, 9,1,1);
book(_hMeff_6jt, 10,1,1);
book(_h_temp_Meff_2jl, "_temp_Meff_2jl",refData( 4,1,1));
book(_h_temp_Meff_2jm, "_temp_Meff_2jm",refData( 5,1,1));
book(_h_temp_Meff_2jt, "_temp_Meff_2jt",refData( 6,1,1));
book(_h_temp_Meff_4jt, "_temp_Meff_4jt",refData( 7,1,1));
book(_h_temp_Meff_5j , "_temp_Meff_5j" ,refData( 8,1,1));
book(_h_temp_Meff_6jm, "_temp_Meff_6jm",refData( 9,1,1));
book(_h_temp_Meff_6jt, "_temp_Meff_6jt",refData(10,1,1));
// Book cut-flows
const vector<string> cuts2j = {"Pre-sel+MET+pT1", "Njet", "Dphi_min(j,MET)", "pT2", "MET/sqrtHT", "m_eff(incl)"};
_flows.addCutflow("2jl", cuts2j);
_flows.addCutflow("2jm", cuts2j);
_flows.addCutflow("2jt", cuts2j);
const vector<string> cutsXj = {"Pre-sel+MET+pT1", "Njet", "Dphi_min(j,MET)", "pT2", "pT4", "Aplanarity", "MET/m_eff(Nj)", "m_eff(incl)"};
_flows.addCutflow("4jt", cutsXj);
_flows.addCutflow("5j", cutsXj);
_flows.addCutflow("6jm", cutsXj);
_flows.addCutflow("6jt", cutsXj);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
_flows.fillinit();
// Same MET cut for all signal regions
//const Vector3 vmet = -apply<MissingMomentum>(event, "TruthMET").vectorEt();
const Vector3 vmet = -apply<SmearedMET>(event, "RecoMET").vectorEt();
const double met = vmet.mod();
if (met < 200*GeV) vetoEvent;
// Get baseline electrons, muons, and jets
Particles elecs = apply<ParticleFinder>(event, "RecoElectrons").particles(Cuts::pT > 10*GeV);
Particles muons = apply<ParticleFinder>(event, "RecoMuons").particles(Cuts::pT > 10*GeV);
Jets jets = apply<JetAlg>(event, "RecoJets").jetsByPt(Cuts::pT > 20*GeV && Cuts::abseta < 2.8); ///< @todo Pile-up subtraction
// Jet/electron/muons overlap removal and selection
// Remove any |eta| < 2.8 jet within dR = 0.2 of a baseline electron
for (const Particle& e : elecs)
ifilter_discard(jets, deltaRLess(e, 0.2, RAPIDITY));
// Remove any electron or muon with dR < 0.4 of a remaining (Nch > 3) jet
for (const Jet& j : jets) {
/// @todo Add track efficiency random filtering
ifilter_discard(elecs, deltaRLess(j, 0.4, RAPIDITY));
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 500*MeV).size() >= 3)
ifilter_discard(muons, deltaRLess(j, 0.4, RAPIDITY));
}
// Discard the softer of any electrons within dR < 0.05
for (size_t i = 0; i < elecs.size(); ++i) {
const Particle& e1 = elecs[i];
/// @todo Would be nice to pass a "tail view" for the filtering, but awkward without range API / iterator guts
ifilter_discard(elecs, [&](const Particle& e2){ return e2.pT() < e1.pT() && deltaR(e1,e2) < 0.05; });
}
// Loose electron selection
ifilter_select(elecs, ParticleEffFilter(ELECTRON_EFF_ATLAS_RUN2_LOOSE));
// Veto the event if there are any remaining baseline leptons
if (!elecs.empty()) vetoEvent;
if (!muons.empty()) vetoEvent;
// Signal jets have pT > 50 GeV
const Jets jets50 = filter_select(jets, Cuts::pT > 50*GeV);
if (jets50.size() < 2) vetoEvent;
vector<double> jetpts; transform(jets, jetpts, pT);
vector<double> jetpts50; transform(jets50, jetpts50, pT);
const double j1pt = jetpts50[0];
const double j2pt = jetpts50[1];
if (j1pt < 200*GeV) vetoEvent;
// Construct multi-jet observables
const double ht = sum(jetpts, 0.0);
const double met_sqrt_ht = met / sqrt(ht);
const double meff_incl = sum(jetpts50, met);
// Get dphis between MET and jets
vector<double> dphimets50; transform(jets50, dphimets50, deltaPhiWRT(vmet));
const double min_dphi_met_3 = min(head(dphimets50, 3));
MSG_DEBUG(dphimets50 << ", " << min_dphi_met_3);
// Jet aplanarity
Sphericity sph; sph.calc(jets);
const double aplanarity = sph.aplanarity();
// Fill SR counters
// 2-jet SRs
if (_flows["2jl"].filltail({true, true, min_dphi_met_3 > 0.8, j2pt > 200*GeV,
met_sqrt_ht > 15*sqrt(GeV), meff_incl > 1200*GeV})) _h_2jl->fill();
if (_flows["2jm"].filltail({j1pt > 300*GeV, true, min_dphi_met_3 > 0.4, j2pt > 50*GeV,
met_sqrt_ht > 15*sqrt(GeV), meff_incl > 1600*GeV})) _h_2jm->fill();
if (_flows["2jt"].filltail({true, true, min_dphi_met_3 > 0.8, j2pt > 200*GeV,
met_sqrt_ht > 20*sqrt(GeV), meff_incl > 2000*GeV})) _h_2jt->fill();
// Fill SR Meff Histo1Ds
// 2-jet SRs
if ((min_dphi_met_3 > 0.8) && (j2pt > 200*GeV) && (met_sqrt_ht > 15*sqrt(GeV))) _h_temp_Meff_2jl->fill(meff_incl);
if ((j1pt > 300*GeV) && (min_dphi_met_3 > 0.4) && (j2pt > 50*GeV) && (met_sqrt_ht > 15*sqrt(GeV))) _h_temp_Meff_2jm->fill(meff_incl);
if ((min_dphi_met_3 > 0.8) && (j2pt > 200*GeV ) && (met_sqrt_ht > 20*sqrt(GeV))) _h_temp_Meff_2jt->fill(meff_incl);
// Upper multiplicity SRs
const double j4pt = jets50.size() > 3 ? jetpts50[3] : -1;
const double j5pt = jets50.size() > 4 ? jetpts50[4] : -1;
const double j6pt = jets50.size() > 5 ? jetpts50[5] : -1;
const double meff_4 = jets50.size() > 3 ? sum(head(jetpts50, 4), met) : -1;
const double meff_5 = jets50.size() > 4 ? meff_4 + jetpts50[4] : -1;
const double meff_6 = jets50.size() > 5 ? meff_5 + jetpts50[5] : -1;
const double met_meff_4 = met / meff_4;
const double met_meff_5 = met / meff_5;
const double met_meff_6 = met / meff_6;
const double min_dphi_met_more = jets50.size() > 3 ? min(tail(dphimets50, -3)) : -1;
if (_flows["4jt"].filltail({true, jets50.size() >= 4, min_dphi_met_3 > 0.4 && min_dphi_met_more > 0.2,
jetpts[1] > 100*GeV, j4pt > 100*GeV, aplanarity > 0.04, met_meff_4 > 0.20, meff_incl > 2200*GeV}))
_h_4jt->fill();
if (_flows["5j"].filltail({true, jets50.size() >= 5, min_dphi_met_3 > 0.4 && min_dphi_met_more > 0.2,
jetpts[1] > 100*GeV, j4pt > 100*GeV && j5pt > 50*GeV, aplanarity > 0.04, met_meff_5 > 0.25, meff_incl > 1600*GeV}))
_h_5j->fill();
if (_flows["6jm"].filltail({true, jets50.size() >= 6, min_dphi_met_3 > 0.4 && min_dphi_met_more > 0.2,
jetpts[1] > 100*GeV, j4pt > 100*GeV && j6pt > 50*GeV, aplanarity > 0.04, met_meff_6 > 0.25, meff_incl > 1600*GeV}))
_h_6jm->fill();
if (_flows["6jt"].filltail({true, jets50.size() >= 6, min_dphi_met_3 > 0.4 && min_dphi_met_more > 0.2,
jetpts[1] > 100*GeV, j4pt > 100*GeV && j6pt > 50*GeV, aplanarity > 0.04, met_meff_6 > 0.20, meff_incl > 2000*GeV}))
_h_6jt->fill();
// Fill SR Meff Histo1Ds
// Upper multiplicity SRs
if (((jets50.size() >= 4) && (min_dphi_met_3 > 0.4) && (min_dphi_met_more > 0.2) && (jetpts[1] > 100*GeV) && (j4pt > 100*GeV) && (aplanarity > 0.04) && (met_meff_4 > 0.20))) _h_temp_Meff_4jt->fill(meff_incl);
if (((jets50.size() >= 5) && (min_dphi_met_3 > 0.4) && (min_dphi_met_more > 0.2 ) &&
(jetpts[1] > 100*GeV) && (j4pt > 100*GeV) && (j5pt > 50*GeV) && (aplanarity > 0.04) && (met_meff_5 > 0.25))) _h_temp_Meff_5j->fill(meff_incl);
if (((jets50.size() >= 6) && (min_dphi_met_3 > 0.4) && (min_dphi_met_more > 0.2) &&
(jetpts[1] > 100*GeV) && (j4pt > 100*GeV) && (j6pt > 50*GeV) && (aplanarity > 0.04) && (met_meff_6 > 0.25))) _h_temp_Meff_6jm->fill(meff_incl);
if (((jets50.size() >= 6) && (min_dphi_met_3 > 0.4) && (min_dphi_met_more > 0.2) &&
(jetpts[1] > 100*GeV) && (j4pt > 100*GeV) && (j6pt > 50*GeV) && (aplanarity > 0.04) && (met_meff_6 > 0.20))) _h_temp_Meff_6jt->fill(meff_incl);
}
/// Normalise histograms etc., after the run
void finalize() {
const double sf = 3.2*crossSection()/femtobarn/sumOfWeights();
scale(_h_2jl, sf); scale(_h_2jm, sf); scale(_h_2jt, sf);
scale(_h_4jt, sf); scale(_h_5j, sf);
scale(_h_6jm, sf); scale(_h_6jt, sf);
scale(_h_temp_Meff_2jl, sf); scale(_h_temp_Meff_2jm, sf); scale(_h_temp_Meff_2jt, sf);
scale(_h_temp_Meff_4jt, sf); scale(_h_temp_Meff_5j, sf);
scale(_h_temp_Meff_6jm, sf); scale(_h_temp_Meff_6jt, sf);
// the HEPData entry corresponding to this does not divide their distributions
// by bin width... so to avoid this we need to convert to Scatter2D which is not divided by bw
_hMeff_2jl = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_2jl,_hMeff_2jl);
_hMeff_2jm = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_2jm,_hMeff_2jm);
_hMeff_2jt = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_2jt,_hMeff_2jt);
_hMeff_4jt = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_4jt,_hMeff_4jt);
_hMeff_5j = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_5j ,_hMeff_5j ) ;
_hMeff_6jm = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_6jm,_hMeff_6jm);
_hMeff_6jt = convertToScatterWithoutBinWidthDivision(_h_temp_Meff_6jt,_hMeff_6jt);
MSG_INFO("CUTFLOWS:\n\n" << _flows);
}
//@}
private:
/// @name Histograms
//@{
CounterPtr _h_2jl, _h_2jm, _h_2jt;
CounterPtr _h_4jt, _h_5j;
CounterPtr _h_6jm, _h_6jt;
Scatter2DPtr _hMeff_2jl, _hMeff_2jm, _hMeff_2jt;
Scatter2DPtr _hMeff_4jt, _hMeff_5j;
Scatter2DPtr _hMeff_6jm, _hMeff_6jt;
Histo1DPtr _h_temp_Meff_2jl, _h_temp_Meff_2jm, _h_temp_Meff_2jt;
Histo1DPtr _h_temp_Meff_4jt, _h_temp_Meff_5j;
Histo1DPtr _h_temp_Meff_6jm, _h_temp_Meff_6jt;
//@}
/// Cut-flows
Cutflows _flows;
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(ATLAS_2016_I1458270);
}
|