Rivet Analyses Reference

ATLAS_2018_I1667046

Search for R-parity-violating SUSY in multi-jet final states at 13 TeV
Experiment: ATLAS (LHC)
Inspire ID: 1667046
Status: VALIDATED
Authors:
  • Shalini Epari
  • Andy Buckley
References:
  • Phys. Lett. B 785 (2018) 136
  • arXiv: 1804.03568
  • DOI:10.1016/j.physletb.2018.08.021
Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • BSM signal events

This search uses 36.1/fb of data collected by the ATLAS detector in proton-proton collisions with a center-of-mass energy of $\sqrt{s}=13$ TeV at the LHC. The analysis is performed using requirements on the number of jets and the number of jets tagged as containing a $b$-hadron, as well as a topological observable formed by the scalar sum of masses of large-radius jets in the event. No significant excess above the expected Standard Model background was observed.

Source code: ATLAS_2018_I1667046.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Tools/Cutflow.hh"

namespace Rivet {


  /// Search for R-parity-violating SUSY in multi-jet final states at 13 TeV
  class ATLAS_2018_I1667046 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2018_I1667046);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Projections
      const FinalState fs (Cuts::abseta < 4.9);
      declare("SmallRJ", FastJets(fs, FastJets::ANTIKT, 0.4));
      declare("LargeRJ", FastJets(fs, FastJets::ANTIKT, 1.0));

      // Book histograms
      book(_h_sigmaM, "sigmaM",   50, 200, 2000);
      book(_h_modeta, "ModEta12", 42,   0,  4.2);

      // Cutflows
      _flows.addCutflow("CutFlow1",
                        {"NJet >= 4 ", "Delta12 < 1.4", "PJet1 > 400 GeV", "M SumJ > 1.0 ",
                            "NbJet > 0", "M SumJ > 1.0  & NbJet > 0"});
      _flows.addCutflow("CutFlow2",
                        {"NJet >= 4 ", "Delta12 < 1.4", "NJet >= 5 ", "M SumJ > 0.8 ",
                            "NbJet > 0", "M SumJ > 0.8  & NbJet > 0"});
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      _flows.fillinit();

      // Trim large-R jets and apply cuts
      Jets LRJ_old = apply<FastJets>(event, "LargeRJ").jetsByPt(Cuts::abseta < 4.9);
      Jets LRJJ;
      fastjet::Filter trimmer(fastjet::JetDefinition(fastjet::kt_algorithm,0.2), fastjet::SelectorPtFractionMin(0.05));
      for (Jet& j: LRJ_old) LRJJ.push_back(trimmer(j));
      Jets LRJ = ifilter_select(LRJJ, Cuts::abseta < 2.0 && Cuts::pT > 200*GeV);
      if (LRJ.size() < 4) vetoEvent;
      LRJ = sortByPt(LRJ); // sorting for constructing sigmaM

      // Small R jets need to pass some cuts + need to be BTagged.
      const Jets SRJ = apply<FastJets>(event, "SmallRJ").jetsByPt(Cuts::abseta < 2.5 && Cuts::pT > 50*GeV);
      Jets BT_SRJ = filter_select(SRJ, hasBTag(Cuts::pT > 5*GeV));
      const int tagg = (BT_SRJ.size() == 0) ? 1 : 0; //if there are no B-TAGGED jets are present, tagg = 1.

      // Now to find B-MATCHED Large R Jets: extra step, not useful for SR regions!
      const Jets BM_LRJ = selectIfAnyDeltaRLess(LRJ, BT_SRJ, 1.0);


      // Now to build observables SigmaM and deltaEta
      // Add mass of leading four large R jets,
      double sigmaM = 0.0;
      for (const Jet& j : head(LRJ, 4)) sigmaM += j.mass();
      _h_sigmaM->fill(sigmaM);

      // Build deta between two leading large-R jets
      const double delta_eta = fabs(deltaEta(LRJ[0], LRJ[1]));
      _h_modeta->fill(delta_eta);

      // CutFlow1
      if (LRJ.size() >= 4) {
        _flows["CutFlow1"].fill(1);
        if (delta_eta < 1.4) {
          _flows["CutFlow1"].fill(2);
          if (LRJ[0].pT() > 400*GeV) {
            _flows["CutFlow1"].fill(3);
            if (sigmaM > 1000*GeV)
              _flows["CutFlow1"].fill(4);
            if (tagg == 0) {
              _flows["CutFlow1"].fill(5);
              if (sigmaM > 1000*GeV){
                _flows["CutFlow1"].fill(6);
              }
            } //end of btagg loop
          } //end of pT loop
        } //end of delta loop
      } //end of Njet>4 loop

      // CutFlow2
      if (LRJ.size() >= 4) {
        _flows["CutFlow2"].fill(1);
        if (delta_eta < 1.4) {
          _flows["CutFlow2"].fill(2);
          if (LRJ.size() >= 5) {
            _flows["CutFlow2"].fill(3);
            if (sigmaM > 800*GeV)
              _flows["CutFlow2"].fill(4);
            if (tagg == 0) {
              _flows["CutFlow2"].fill(5);
              if (sigmaM > 800*GeV){_flows["CutFlow2"].fill(6);
              }
            } //end of btagg loop
          } //Njet>5 loop
        } //end of delta loop
      } //Njet>4 loop

    }


    /// Normalise histograms etc., after the run
    void finalize() {
      const double expected = 36.1*crossSection()/femtobarn;
      normalize(_h_sigmaM, expected/sumOfWeights());
      normalize(_h_modeta, expected/sumOfWeights());
      // _flows.scale(99.7/numEvents());
      // @todo suppress output in reentrant mode?
      MSG_INFO(_flows);
    }

    //@}


  private:

    /// @name Histograms
    Histo1DPtr _h_sigmaM, _h_modeta;

    // Cutflows
    Cutflows _flows;

  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ATLAS_2018_I1667046);


}