1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/DressedLeptons.hh"
namespace Rivet {
/// @brief leptoquark search at 13 TeV
/// @note This base class contains a "mode" variable to specify lepton channel
class ATLAS_2019_I1718132 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2019_I1718132);
//@}
/// Book histograms and initialise projections before the run
void init() {
// default to widest cut, electrons and muons.
_mode = 3;
if ( getOption("LMODE") == "ELEL" ) _mode = 1;
if ( getOption("LMODE") == "MUMU" ) _mode = 2;
if ( getOption("LMODE") == "ELMU" ) _mode = 3;
// Lepton cuts
Cut baseline_lep_cuts = Cuts::abseta < 2.5 && Cuts::pT >= 40*GeV;
// All final state particles
const FinalState fs;
// Get photons to dress leptons
FinalState photons(Cuts::abspid == PID::PHOTON);
// Find and dress the electrons and muons
PromptFinalState bare_leps(Cuts::abspid == PID::ELECTRON || Cuts::abspid == PID::MUON);
DressedLeptons dressed_leps(photons, bare_leps, 0.1, baseline_lep_cuts, true);
declare(dressed_leps, "leptons");
//and finally the jets:
FastJets jets(fs, FastJets::ANTIKT, 0.4, JetAlg::Muons::NONE);
declare(jets, "jets");
size_t offset = _mode;
book(_h["JetPt_leading"], 1 + offset, 1, 1);
book(_h["JetPt_subleading"], 7 + offset, 1, 1);
book(_h["minDeltaPhiJ0_L"], 13 + offset, 1, 1);
book(_h["minDeltaPhiJ1_L"], 19 + offset, 1, 1);
book(_h["DeltaEtaJJ"], 25 + offset, 1, 1);
book(_h["DeltaPhiJJ"], 31 + offset, 1, 1);
book(_h["DeltaPhiLL"], 37 + offset, 1, 1);
book(_h["DiJetMass"], 43 + offset, 1, 1);
book(_h["DiLepPt"], 49 + offset, 1, 1);
book(_h["Ht"], 55 + offset, 1, 1);
book(_h["St"], 61 + offset, 1, 1);
offset = _mode + 3;
book(_hST["JetPt_leading"], 1 + offset, 1, 1);
book(_hST["JetPt_subleading"], 7 + offset, 1, 1);
book(_hST["minDeltaPhiJ0_L"], 13 + offset, 1, 1);
book(_hST["minDeltaPhiJ1_L"], 19 + offset, 1, 1);
book(_hST["DeltaEtaJJ"], 25 + offset, 1, 1);
book(_hST["DeltaPhiJJ"], 31 + offset, 1, 1);
book(_hST["DeltaPhiLL"], 37 + offset, 1, 1);
book(_hST["DiJetMass"], 43 + offset, 1, 1);
book(_hST["DiLepPt"], 49 + offset, 1, 1);
book(_hST["Ht"], 55 + offset, 1, 1);
book(_hST["St"], 61 + offset, 1, 1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Get the selected leptons:
vector<DressedLepton> leptons = apply<DressedLeptons>(event, "leptons").dressedLeptons();
// get the selected jets:
Jets jets = apply<JetAlg>(event, "jets").jetsByPt(Cuts::pT > 60*GeV && Cuts::absrap < 2.5);
// exclude jets which are actually electrons
// This would be super-sweet, but unfortunately lxplus default gcc4.8 doesn't like it :(
/*idiscardIfAny(jets, leptons, [](const Jet& jet, const DressedLepton& lep) {
return lep.abspid() == PID::ELECTRON and deltaR(jet, lep) < 0.2;
});*/
for (const DressedLepton& lep : leptons) {
ifilter_discard(jets, [&](const Jet& jet) {
return lep.abspid() == PID::ELECTRON and deltaR(jet, lep) < 0.2;
});
}
// remove cases where muons are too close to a jet
if (_mode == 3) { // el-mu case
/*idiscardIfAny(leptons, jets, [](const DressedLepton& lep, const Jet& jet) {
return lep.abspid() == PID::MUON and deltaR(jet, lep) < 0.4;
});*/
for (const DressedLepton& lep : leptons) {
ifilter_discard(jets, [&](const Jet& jet) {
return lep.abspid() == PID::MUON and deltaR(jet, lep) < 0.4;
});
}
}
// make sure we have the right number of jets
if (jets.size() < 2) vetoEvent;
// make sure we have right number of leptons
size_t requiredMuons = 0, requiredElecs = 0;
if (_mode == 1) requiredElecs = 2;
if (_mode == 2) requiredMuons = 2;
if (_mode == 3) requiredMuons = requiredElecs = 1;
size_t nEl = count(leptons, [](const DressedLepton& lep) { return lep.abspid() == PID::ELECTRON; });
if (nEl != requiredElecs) vetoEvent;
size_t nMu = count(leptons, [](const DressedLepton& lep) { return lep.abspid() == PID::MUON; });
if (nMu != requiredMuons) vetoEvent;
// make sure leptons are in right order (should be OK byt better safe than sorry!)
std::sort(leptons.begin(), leptons.end(), cmpMomByPt);
// calculate all observables and store in dict
const double jetpt_leading = jets[0].pT()/GeV;
const double jetpt_subleading = jets[1].pT()/GeV;
const double mll = (leptons[0].momentum() + leptons[1].momentum()).mass()/GeV;
const double st = (leptons[0].pT() + leptons[1].pT() + jets[0].pT() + jets[1].pT())/GeV;
const double ht = (jets[0].pT() + jets[1].pT())/GeV;
const double dijetmass = (jets[0].mom() + jets[1].mom()).mass()/GeV;
const double dileppt = (leptons[0].momentum() + leptons[1].momentum()).pT()/GeV;
const double deltaphijj = deltaPhi(jets[0], jets[1]);
const double deltaetajj = deltaEta(jets[0], jets[1]);
const double deltaphill = deltaPhi(leptons[0], leptons[1]);
const double mindeltaphij0_l = min(deltaPhi(jets[0], leptons[0]), deltaPhi(jets[0], leptons[1]));
const double mindeltaphij1_l = min(deltaPhi(jets[1], leptons[0]), deltaPhi(jets[1], leptons[1]));
// add Z-mass window cut if needed
bool addMllCut = _mode == 1 || _mode == 2;
if (addMllCut && (mll < 70. || 110. < mll)) vetoEvent;
// fill output histos
_h["JetPt_leading"]->fill(jetpt_leading);
_h["JetPt_subleading"]->fill(jetpt_subleading);
_h["St"]->fill(st);
_h["Ht"]->fill(ht);
_h["DiJetMass"]->fill(dijetmass);
_h["DiLepPt"]->fill(dileppt);
_h["DeltaPhiJJ"]->fill(deltaphijj);
_h["DeltaEtaJJ"]->fill(deltaetajj);
_h["DeltaPhiLL"]->fill(deltaphill);
_h["minDeltaPhiJ0_L"]->fill(mindeltaphij0_l);
_h["minDeltaPhiJ1_L"]->fill(mindeltaphij1_l);
// "extreme" ST cut
if (st > 600.) {
// fill output histos
_hST["JetPt_leading"]->fill(jetpt_leading);
_hST["JetPt_subleading"]->fill(jetpt_subleading);
_hST["St"]->fill(st);
_hST["Ht"]->fill(ht);
_hST["DiJetMass"]->fill(dijetmass);
_hST["DiLepPt"]->fill(dileppt);
_hST["DeltaPhiJJ"]->fill(deltaphijj);
_hST["DeltaEtaJJ"]->fill(deltaetajj);
_hST["DeltaPhiLL"]->fill(deltaphill);
_hST["minDeltaPhiJ0_L"]->fill(mindeltaphij0_l);
_hST["minDeltaPhiJ1_L"]->fill(mindeltaphij1_l);
}
}
void finalize() {
const double sf = crossSectionPerEvent();
scale(_h, sf); scale(_hST, sf);
}
//@}
protected:
size_t _mode;
private:
map<string, Histo1DPtr> _h, _hST;
};
RIVET_DECLARE_PLUGIN(ATLAS_2019_I1718132);
}
|