Rivet Analyses Reference

ATLAS_2019_I1720442

Inclusive 4-lepton lineshape at 13 TeV
Experiment: ATLAS (LHC)
Inspire ID: 1720442
Status: VALIDATED
Authors:
  • Max Goblirsch
  • Jon Butterworth
  • Christian Gutschow
References:Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • $p p \to \ell \ell \ell \ell + X$ at 13 TeV

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\to ZZ\to 4\ell$ and $Z\to 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

Source code: ATLAS_2019_I1720442.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/DressedLeptons.hh"

namespace Rivet {


  /// ATLAS 4-lepton lineshape at 13 TeV
  class ATLAS_2019_I1720442 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2019_I1720442);

    void init() {

      PromptFinalState photons(Cuts::abspid == PID::PHOTON);
      PromptFinalState elecs(Cuts::abspid == PID::ELECTRON);
      PromptFinalState muons(Cuts::abspid == PID::MUON);

      // Selection
      Cut el_fid_sel = (Cuts::abseta < 2.47) && (Cuts::pT > 7*GeV);
      Cut mu_fid_sel = (Cuts::abseta < 2.7) && (Cuts::pT > 5*GeV);

      DressedLeptons dressed_elecs(photons, elecs, 0.005, el_fid_sel, false);
      declare(dressed_elecs, "elecs");

      DressedLeptons dressed_muons(photons, muons, 0.005, mu_fid_sel, false);
      declare(dressed_muons, "muons");

      // Book histos
      book(_h["m4l_inclusive"], 1,1,1);

      book(_h["m4l_ptslice1"], 2,1,1);
      book(_h["m4l_ptslice2"], 3,1,1);
      book(_h["m4l_ptslice3"], 4,1,1);
      book(_h["m4l_ptslice4"], 5,1,1);

      book(_h["m4l_rapidityslice1"], 6,1,1);
      book(_h["m4l_rapidityslice2"], 7,1,1);
      book(_h["m4l_rapidityslice3"], 8,1,1);
      book(_h["m4l_rapidityslice4"], 9,1,1);

      book(_h["m4l_4mu"], 12,1,1);
      book(_h["m4l_4e"], 13,1,1);
      book(_h["m4l_2e2mu"], 14,1,1);
    }


    /// @brief Generic dilepton candidate
    /// @todo Move into the Rivet core?
    struct Dilepton : public ParticlePair {
      Dilepton() { }
      Dilepton(ParticlePair _particlepair) : ParticlePair(_particlepair) {
        assert(first.abspid() == second.abspid());
      }
      FourMomentum mom() const { return first.momentum() + second.momentum(); }
      operator FourMomentum() const { return mom(); }
      static bool cmppT(const Dilepton& lx, const Dilepton& rx) { return lx.mom().pT() < rx.mom().pT(); }
      int flavour() const { return first.abspid(); }
      double pTl1() const { return first.pT(); }
      double pTl2() const { return second.pT(); }
    };


    struct Quadruplet {
      Quadruplet (Dilepton z1, Dilepton z2): _z1(z1), _z2(z2) { }
      enum class FlavCombi { mm=0, ee, me, em, undefined };
      FourMomentum mom() const { return _z1.mom() + _z2.mom(); }
      Dilepton getZ1() const { return _z1; }
      Dilepton getZ2() const { return _z2; }
      Dilepton _z1, _z2;
      FlavCombi type() const {
        if (     _z1.flavour() == 13 && _z2.flavour() == 13) { return FlavCombi::mm; }
        else if (_z1.flavour() == 11 && _z2.flavour() == 11) { return FlavCombi::ee; }
        else if (_z1.flavour() == 13 && _z2.flavour() == 11) { return FlavCombi::me; }
        else if (_z1.flavour() == 11 && _z2.flavour() == 13) { return FlavCombi::em; }
        else  return FlavCombi::undefined;
      }
    };


    vector<Quadruplet> getBestQuads(Particles& particles) {
      // H->ZZ->4l pairing
      // - Two same flavor opposite charged leptons
      // - Ambiguities in pairing are resolved by choosing the combination
      //     that results in the smaller value of |mll - mZ| for each pair successively
      vector<Quadruplet> quads {};

      size_t n_parts = particles.size();
      if (n_parts < 4)  return quads;

      // STEP 1: find SFOS pairs
      vector<Dilepton> SFOS;
      for (size_t i = 0; i < n_parts; ++i) {
        for (size_t j = 0; j < i; ++j) {
          if (particles[i].pid() == -particles[j].pid()) {
            // sort such that the negative lepton is listed first
            if (particles[i].pid() > 0)  SFOS.push_back(Dilepton(make_pair(particles[i], particles[j])));
            else                         SFOS.push_back(Dilepton(make_pair(particles[j], particles[i])));
          }
        }
      }
      if (SFOS.size() < 2)  return quads;

      // now we sort the SFOS pairs
      std::sort(SFOS.begin(), SFOS.end(), [](const Dilepton& p1, const Dilepton& p2) {
          return fabs(p1.mom().mass() - Z_mass) < fabs(p2.mom().mass() - Z_mass);
        });

      // Form all possible quadruplets passing the pT cuts
      for (size_t k = 0; k < SFOS.size(); ++k) {
        for (size_t l = k+1; l < SFOS.size(); ++l) {
          if (deltaR(SFOS[k].first.mom(),  SFOS[l].first.mom())  < 1e-13)  continue;
          if (deltaR(SFOS[k].first.mom(),  SFOS[l].second.mom()) < 1e-13)  continue;
          if (deltaR(SFOS[k].second.mom(), SFOS[l].first.mom())  < 1e-13)  continue;
          if (deltaR(SFOS[k].second.mom(), SFOS[l].second.mom()) < 1e-13)  continue;

          vector<double> lep_pt { SFOS[k].pTl1(), SFOS[k].pTl2(), SFOS[l].pTl1(), SFOS[l].pTl2() };
          std::sort(lep_pt.begin(), lep_pt.end(), std::greater<double>());
          if (!(lep_pt[0] > 20*GeV && lep_pt[1] > 15*GeV && lep_pt[2] > 10*GeV)) continue;
          quads.push_back( Quadruplet(SFOS[k], SFOS[l]) );
        }
      }
      return quads;
    }


    bool passMassCuts(const Quadruplet& theQuad){
      const vector<double> cuts_m34{ 5*GeV, 5*GeV, 12*GeV, 12*GeV, 50*GeV };
      const vector<double> cuts_m4l{ 0, 100*GeV, 110*GeV, 140*GeV, 190*GeV };

      double m4l = theQuad.mom().mass();
      double mZ1 = theQuad.getZ1().mom().mass();
      double mZ2 = theQuad.getZ2().mom().mass();

      // Invariant-mass requirements
      double cutval = cuts_m34.back();
      for (size_t k = 0; k < cuts_m34.size(); ++k) {
        if (cuts_m4l[k] > m4l) {
          cutval = cuts_m34[k-1] + (cuts_m34[k] - cuts_m34[k-1])/(cuts_m4l[k] - cuts_m4l[k-1]) * (m4l - cuts_m4l[k-1]);
          break;
        }
      }
      return inRange(mZ1, 50*GeV, 106*GeV) && inRange(mZ2, cutval, 115*GeV);
    }


    bool pass_dRll(const Quadruplet& theQuad) {
      const double dR_min_same = 0.1;
      const double dR_min_opp = 0.2;
      double dr_min_cross = dR_min_opp;
      if (theQuad.getZ1().flavour() == theQuad.getZ2().flavour()) {
        dr_min_cross = dR_min_same;
      }
      return !((deltaR(theQuad.getZ1().first,  theQuad.getZ1().second) < dR_min_same)  ||
               (deltaR(theQuad.getZ2().first,  theQuad.getZ2().second) < dR_min_same)  ||
               (deltaR(theQuad.getZ1().first,  theQuad.getZ2().first)  < dr_min_cross) ||
               (deltaR(theQuad.getZ1().first,  theQuad.getZ2().second) < dr_min_cross) ||
               (deltaR(theQuad.getZ1().second, theQuad.getZ2().first)  < dr_min_cross) ||
               (deltaR(theQuad.getZ1().second, theQuad.getZ2().second) < dr_min_cross));
    }


    bool pass_Jpsi(const Quadruplet& theQuad){
      Particles all_leps { theQuad.getZ1().first, theQuad.getZ1().second, theQuad.getZ2().first, theQuad.getZ2().second };
      for (const Particle& lep1 : all_leps) {
        for (const Particle& lep2 : all_leps) {
          if (lep1.pid() == -lep2.pid() && (lep1.mom() + lep2.mom()).mass() < 5*GeV) return false;
        }
      }
      return true;
    }


    // Handle 3 further CF stages - m12/34, dRmin, jpsi veto
    bool passSelection (const Quadruplet& theQuad){
      return passMassCuts(theQuad) && pass_dRll(theQuad) && pass_Jpsi(theQuad);
    }


    // Do the analysis
    void analyze(const Event& event) {

      //preselection of leptons for ZZ-> llll final state
      Particles dressed_leptons;
      for (auto lep : apply<DressedLeptons>(event, "muons").dressedLeptons()) { dressed_leptons.push_back(lep); }
      for (auto lep : apply<DressedLeptons>(event, "elecs").dressedLeptons()) { dressed_leptons.push_back(lep); }

      auto foundDressed = getBestQuads(dressed_leptons);
      // if we don't find any quad, we can stop here
      if (foundDressed.empty())  vetoEvent;

      bool pass = passSelection(foundDressed[0]);
      if (pass) {
        double m4l = foundDressed[0].mom().mass()/GeV;
        double pt4l = foundDressed[0].mom().pT()/GeV;
        double y4l = foundDressed[0].mom().absrap();
        Quadruplet::FlavCombi flavour = foundDressed[0].type();
        _h["m4l_inclusive"]->fill(m4l);
        if (     pt4l <  20.)  _h["m4l_ptslice1"]->fill(m4l);
        else if (pt4l <  50.)  _h["m4l_ptslice2"]->fill(m4l);
        else if (pt4l < 100.)  _h["m4l_ptslice3"]->fill(m4l);
        else if (pt4l < 600.)  _h["m4l_ptslice4"]->fill(m4l);

        if (     y4l < 0.4)  _h["m4l_rapidityslice1"]->fill(m4l);
        else if (y4l < 0.8)  _h["m4l_rapidityslice2"]->fill(m4l);
        else if (y4l < 1.2)  _h["m4l_rapidityslice3"]->fill(m4l);
        else if (y4l < 2.5)  _h["m4l_rapidityslice4"]->fill(m4l);

        if (     flavour == Quadruplet::FlavCombi::mm) _h["m4l_4mu"]->fill(m4l);
        else if (flavour == Quadruplet::FlavCombi::ee) _h["m4l_4e"]->fill(m4l);
        else if (flavour == Quadruplet::FlavCombi::me || flavour == Quadruplet::FlavCombi::em) {
          _h["m4l_2e2mu"]->fill(m4l);
        }
      }

    }


    /// Finalize
    void finalize() {
      const double sf = crossSection() / femtobarn / sumOfWeights();
      scale(_h, sf);
    }


  private:

    map<string, Histo1DPtr> _h;
    static constexpr double Z_mass = 91.1876;

  };


  RIVET_DECLARE_PLUGIN(ATLAS_2019_I1720442);

}