Rivet Analyses Reference

ATLAS_2019_I1746286

K-short and Lambda production in ttbar events at 7 TeV
Experiment: ATLAS (LHC)
Inspire ID: 1746286
Status: VALIDATED
Authors:
  • Sergio Calvente
  • Fernando Barreiro
  • Javier LLorente
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • ttbar production at 7 TeV, c*tau>10mm is stable

Measurements of $K^0_S$ and $\Lambda^0$ production in $t\bar{t}$ final states have been performed. They are based on a data sample with integrated luminosity of 4.6 fb$^{-1}$ from proton-proton collisions at a centre-of-mass energy of 7 TeV, collected in 2011 with the ATLAS detector at the Large Hadron Collider. Neutral strange particles are separated into three classes, depending on whether they are contained in a jet, with or without a $b$-tag, or not associated with a selected jet. The aim is to look for differences in their main kinematic distributions. A comparison of data with several Monte Carlo simulations using different hadronisation and fragmentation schemes, colour reconnection models and different tunes for the underlying event has been made. The production of neutral strange particles in $t\bar{t}$ dileptonic events is found to be well described by current Monte Carlo models for $K^0_S$ ans $\Lambda^0$ production within jets, but not for those produced outside jets.

Source code: ATLAS_2019_I1746286.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/HeavyHadrons.hh"

namespace Rivet {


  class ATLAS_2019_I1746286 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2019_I1746286);

    /// Book histograms and initialise projections before the run
    void init() {
      // Set up projections
      const FinalState fs(Cuts::abseta < 4.5);

      /// Get electrons from truth record
      FinalState elec_fs(Cuts::abspid == PID::ELECTRON && Cuts::abseta < 2.47 && Cuts::pT > 25*GeV);
      declare(elec_fs, "ELEC_FS");

      /// Get muons which pass the initial kinematic cuts:
      FinalState muon_fs(Cuts::abspid == PID::MUON && Cuts::abseta < 2.5 && Cuts::pT > 20*GeV);
      declare(muon_fs, "MUON_FS");

      // get b-hadrons
      declare(HeavyHadrons(Cuts::pT > 5*GeV), "BHadrons");

      UnstableParticles k0_fs(Cuts::abspid == PID::K0S && Cuts::abseta < 2.5 && Cuts::E > 1*GeV);
      declare(k0_fs, "K0_FS");

      UnstableParticles lambda_fs(Cuts::abspid == PID::LAMBDA && Cuts::abseta < 2.5 && Cuts::E > 1*GeV);
      declare(lambda_fs, "LAMBDA_FS");

      // Final state used as input for jet-finding.
      // We include everything except the muons and neutrinos
      FastJets jets(fs, FastJets::ANTIKT, 0.4, JetAlg::Muons::NONE, JetAlg::Invisibles::NONE);
      declare(jets, "JETS");

      // Book histograms
      book(_h["b_k0_pt"],  1, 1, 1);
      book(_h["b_k0_x"],   2, 1, 1);
      book(_h["b_k0_e"],   3, 1, 1);
      book(_h["b_k0_eta"], 4, 1, 1);
      book(_h["b_k0_n"],   5, 1, 1);

      book(_h["j_k0_pt"],  6, 1, 1);
      book(_h["j_k0_x"],   7, 1, 1);
      book(_h["j_k0_e"],   8, 1, 1);
      book(_h["j_k0_eta"], 9, 1, 1);
      book(_h["j_k0_n"],  10, 1, 1);

      book(_h["out_k0_pt"],  11, 1, 1);
      book(_h["out_k0_e"],   12, 1, 1);
      book(_h["out_k0_eta"], 13, 1, 1);
      book(_h["out_k0_n"],   14, 1, 1);

      book(_h["all_k0_pt"],  15, 1, 1);
      book(_h["all_k0_e"],   16, 1, 1);
      book(_h["all_k0_eta"], 17, 1, 1);
      book(_h["all_k0_n"],   18, 1, 1);

      book(_h["all_l_pt"],  19, 1, 1);
      book(_h["all_l_e"],   20, 1, 1);
      book(_h["all_l_eta"], 21, 1, 1);

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      /// Get the various sets of final state particles
      const Particles& elecFS = apply<FinalState>(event, "ELEC_FS").particlesByPt();
      const Particles& muonFS = apply<FinalState>(event, "MUON_FS").particlesByPt();
      const Particles& k0FS = apply<UnstableParticles>(event, "K0_FS").particlesByPt();
      const Particles& lambdaFS = apply<UnstableParticles>(event, "LAMBDA_FS").particlesByPt();

      // Get all jets with pT > 7 GeV (ATLAS standard jet collection)
      Jets jets = apply<FastJets>(event, "JETS").jetsByPt(7*GeV);

      // Keep any jets that pass the pt cut
      Jets good_jets = filter_select(jets, Cuts::pT > 25*GeV && Cuts::abseta < 2.5);

      // Remove jets too close to an electron
      idiscardIfAnyDeltaRLess(good_jets, elecFS, 0.2);

      // Classify the event type
      const size_t nElec = elecFS.size();
      const size_t nMuon = muonFS.size();
      bool isDilepton = false;
      if (nElec == 2 && nMuon == 0) {
        if (charge(elecFS[0]) != charge(elecFS[1])) isDilepton = true;
      } else if (nElec == 1 && nMuon == 1) {
        if (charge(elecFS[0]) != charge(muonFS[0])) isDilepton = true;
      } else if (nElec == 0 && nMuon == 2) {
        if (charge(muonFS[0]) != charge(muonFS[1])) isDilepton = true;
      }
      const bool isGoodEvent = (isDilepton && good_jets.size() >= 2);
      if (!isGoodEvent) vetoEvent;

      // Select b-hadrons
      const Particles& bHadrons = apply<HeavyHadrons>(event, "BHadrons").bHadrons();

      // Select b-jets as those containing a b-hadron
      Jets bjets = discardIfAnyDeltaRLess(good_jets, bHadrons, 0.3);

      size_t n_k0_all = 0;
      size_t n_k0_out = 0;
      size_t n_k0_b = 0;
      size_t n_k0_j = 0;

      size_t n_k0_all_visible = 0;
      size_t n_k0_out_visible = 0;
      size_t n_k0_b_visible = 0;
      size_t n_k0_j_visible = 0;

      bool isVisible = false;
      // Loop over all K0s particles
      for (const Particle& k : k0FS) {
        if (k.hasStableDescendantWith(Cuts::pid == PID::PIPLUS)) isVisible = true;

        n_k0_all += 1;
        if (isVisible) n_k0_all_visible += 1;
        _h["all_k0_pt"]->fill(k.pT()/GeV);
        _h["all_k0_eta"]->fill(k.abseta());
        _h["all_k0_e"]->fill(k.E()/GeV);

        bool isJetAssoc = false, isBjet = false;
        double minDeltaR = 1000., jetAssocE = 0.;

        for (const Jet& j : good_jets) {
          const double k0_jetdR = deltaR(j, k);
          if (k0_jetdR < 0.4 && k0_jetdR < minDeltaR) { 
            isJetAssoc = true;
            minDeltaR = k0_jetdR;
            jetAssocE = j.E();
            isBjet = any(bHadrons, DeltaRLess(j, 0.3));
          }
        }

        // K0s not associated to jets
        if (!isJetAssoc){
          n_k0_out += 1;
          if(isVisible) n_k0_out_visible += 1;
          _h["out_k0_pt"]->fill(k.pT()/GeV);
          _h["out_k0_eta"]->fill(k.abseta());
          _h["out_k0_e"]->fill(k.E()/GeV);
        }

        //K0s associated to b-jets
        if(isJetAssoc && isBjet){
          n_k0_b += 1;
          if(isVisible) n_k0_b_visible += 1;
          _h["b_k0_pt"]->fill(k.pT()/GeV);
          _h["b_k0_eta"]->fill(k.abseta());
          _h["b_k0_e"]->fill(k.E()/GeV);
          _h["b_k0_x"]->fill(k.E()/jetAssocE);
        }

        //K0s associated to non b-jets
        if(isJetAssoc && !isBjet){
          n_k0_j += 1;
          if(isVisible) n_k0_j_visible += 1;
          _h["j_k0_pt"]->fill(k.pT()/GeV);
          _h["j_k0_eta"]->fill(k.abseta());
          _h["j_k0_e"]->fill(k.E()/GeV);
          _h["j_k0_x"]->fill(k.E()/jetAssocE);
        }
      }


      // K0s multiplicities
      _h["all_k0_n"]->fill(n_k0_all_visible);
      _h["out_k0_n"]->fill(n_k0_out_visible);
      _h["b_k0_n"]->fill(n_k0_b_visible);
      _h["j_k0_n"]->fill(n_k0_j_visible);
    

      // Loop over all Lambda particles
      //size_t n_lambda_all = 0;
      for(const Particle& l : lambdaFS) {
        //n_lambda_all += 1;
        _h["all_l_pt"]->fill(l.pT()/GeV);
        _h["all_l_eta"]->fill(l.abseta());
        _h["all_l_e"]->fill(l.E()/GeV);
      }
    }


    // Histogram normalization to the number of events passing the cuts
    void finalize(){
      const double sf = 1.0 / _h["all_k0_n"]->sumW();
      for (auto& hist : _h) { scale(hist.second, sf); }
    }

  private:

    // Counters
    map<string, Histo1DPtr> _h;

  };

  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ATLAS_2019_I1746286);
}