Rivet Analyses Reference

ATLAS_2019_I1772071

Measurement of isolated-photon plus two-jet production
Experiment: ATLAS (LHC)
Inspire ID: 1772071
Status: VALIDATED
Authors:
  • Ana Rosario Cueto Gomez
  • Deepak Kar
References:Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • photon+jet production at 13 TeV

The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass e nergy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{−1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, γ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.

Source code: ATLAS_2019_I1772071.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {


  /// @brief Isolated photon + 2 jets at 13 TeV
  class ATLAS_2019_I1772071 : public Analysis {
  public:

    // Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2019_I1772071);

    // Book histograms and initialise projections before the run
    void init() {
      const FinalState fs;

      // calorimeter particles
      VisibleFinalState visFS(fs);
      VetoedFinalState calo_fs(visFS);
      calo_fs.addVetoPairId(PID::MUON);
      declare(calo_fs, "calo");

      // Voronoi eta-phi tessellation with KT jets, for ambient energy density calculation
      FastJets fj(fs, FastJets::KT, 0.5, JetAlg::Muons::NONE, JetAlg::Invisibles::NONE); // E-scheme used by default;
      fj.useJetArea(new fastjet::AreaDefinition(fastjet::voronoi_area, fastjet::VoronoiAreaSpec(1.0)));
      declare(fj, "KtJetsD05");

      // photon
      PromptFinalState photonfs(Cuts::abspid == PID::PHOTON && Cuts::abseta < 2.37 && Cuts::pT > 150*GeV);
      declare(photonfs, "photons");

      // Jets
      FastJets jetpro(fs,  FastJets::ANTIKT, 0.4, JetAlg::Muons::NONE, JetAlg::Invisibles::NONE);       
      declare(jetpro, "Jets");


      vector<string> observables = {"ETGamma", "pTjet", "RapJet","DeltaRapGammaJet", 
                                    "DeltaPhiGammaJet", "DeltaRapJetJet", "DeltaPhiJetJet", 
                                    "MassJetJet", "MassGammaJetJet"};
      vector<string> regions = {"Inclusive","Fragmentation", "Direct"};

      int i=0;
      for (const string& region : regions){ 
        int j = 1;
	      for (const string& name : observables) {
	        book(_h[name+region], 9*i+j, 1, 1);
	        ++j;
	      }
	      ++i;    
      }
    }


    size_t getEtaBin(double eta) const {
      return binIndex(fabs(eta), _eta_bins_areaoffset);
    }


    // Perform the per-event analysis
    void analyze(const Event& event) {

      // Get the photon
      const Particles& photons = apply<PromptFinalState>(event, "photons").particlesByPt(Cuts::abseta < 1.37 || Cuts::abseta > 1.56);
      if (photons.empty())  vetoEvent;
      const FourMomentum photon = photons[0].momentum();

      // Get the jet
      Jets jets = apply<FastJets>(event, "Jets").jetsByPt(Cuts::pT > 100*GeV && Cuts::absrap < 2.5);
      ifilter_discard(jets, deltaRLess(photon, 0.8));
      if ( jets.size()<2 )  vetoEvent;
      FourMomentum leadingJet = jets[0].momentum();
      FourMomentum subleadingJet = jets[1].momentum();

      // Compute the jet pT densities
      vector< vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
      FastJets fastjets = apply<FastJets>(event, "KtJetsD05");
      const auto clust_seq_area = fastjets.clusterSeqArea();
      for (const Jet& jet : fastjets.jets()) {
        const double area = clust_seq_area->area(jet); // Implicit call to pseudojet().
        //const double area2 = (clust_seq_area->area_4vector(jet)).perp(); // Area definition used in egammaTruthParticles.
        if (area > 1e-3 && jet.abseta() < _eta_bins_areaoffset.back()) {
          ptDensities.at(getEtaBin(jet.abseta())) += jet.pT()/area;
        }
      }

      // Compute the median event energy density
      vector<double> ptDensity;
      for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; ++b) {
        ptDensity += ptDensities[b].empty() ? 0 : median(ptDensities[b]);
      }

      // Compute photon isolation with a standard ET cone
      FourMomentum mom_in_EtCone;
      const Particles calo_fs = apply<VetoedFinalState>(event, "calo").particles();
      const double iso_dr = 0.4;
      for (const Particle& p : calo_fs) {
        // Check if it's in the cone of .4
        if (sqrt(2.0*(cosh(p.eta()-photon.eta()) - cos(p.phi()-photon.phi()))) >= iso_dr) continue;
        // Increment sum
        mom_in_EtCone += p.momentum();
      }

      // Remove the photon energy from the isolation
      mom_in_EtCone -= photon;

      // Figure out the correction (area*density)
      const double etcone_area = PI*iso_dr*iso_dr;
      const double correction = ptDensity[getEtaBin(photon.abseta())] * etcone_area;
      // Require photon to be isolated
      if ((mom_in_EtCone.Et()-correction) > (0.0042*photon.pT() + 10*GeV))  vetoEvent;

      // Fill histos
      const double photon_pt = photon.pT()/GeV;
      const double jet_pt1 = leadingJet.pT()/GeV;
      const double jet_pt2 = subleadingJet.pT()/GeV;
      const double jet1_y = leadingJet.rapidity();
      const double jet2_y = subleadingJet.rapidity();
      const double phjet1_dphi = deltaPhi(photon, leadingJet);
      const double phjet2_dphi = deltaPhi(photon, subleadingJet);
      const double phjet1_drap = fabs(photon.eta()-leadingJet.rapidity());
      const double phjet2_drap = fabs(photon.eta()-subleadingJet.rapidity());
      const double jetjet_drap = fabs(leadingJet.rapidity()-subleadingJet.rapidity());
      const FourMomentum jetjet = leadingJet+subleadingJet;
      const double mjetjet = jetjet.mass()/GeV;
      const FourMomentum phjet1 = photon+leadingJet;
      const FourMomentum phjet2 = photon+subleadingJet;
      const FourMomentum phjetjet = photon+leadingJet+subleadingJet;
      const double mphjetjet = phjetjet.mass()/GeV;
      const double jetjet_dphi = deltaPhi(subleadingJet, leadingJet);

      _h["ETGammaInclusive"]->fill(photon_pt);
      _h["pTjetInclusive"]->fill(jet_pt1);
      _h["pTjetInclusive"]->fill(jet_pt2);
      _h["RapJetInclusive"]->fill(fabs(jet1_y));
      _h["RapJetInclusive"]->fill(fabs(jet2_y));
      _h["DeltaRapGammaJetInclusive"]->fill(phjet1_drap);
      _h["DeltaRapGammaJetInclusive"]->fill(phjet2_drap);
      _h["DeltaPhiGammaJetInclusive"]->fill(phjet1_dphi);
      _h["DeltaPhiGammaJetInclusive"]->fill(phjet2_dphi);
      _h["MassJetJetInclusive"]->fill(mjetjet);
      _h["DeltaPhiJetJetInclusive"]->fill(jetjet_dphi);
      _h["DeltaRapJetJetInclusive"]->fill(jetjet_drap);
      _h["MassGammaJetJetInclusive"]->fill(mphjetjet);
      
      if (photon_pt>jet_pt1) {
        _h["ETGammaDirect"]->fill(photon_pt);
        _h["pTjetDirect"]->fill(jet_pt1);
        _h["pTjetDirect"]->fill(jet_pt2);
        _h["RapJetDirect"]->fill(fabs(jet1_y));
        _h["RapJetDirect"]->fill(fabs(jet2_y));
        _h["DeltaRapGammaJetDirect"]->fill(phjet1_drap);
        _h["DeltaRapGammaJetDirect"]->fill(phjet2_drap);
        _h["DeltaPhiGammaJetDirect"]->fill(phjet1_dphi);
        _h["DeltaPhiGammaJetDirect"]->fill(phjet2_dphi);
        _h["MassJetJetDirect"]->fill(mjetjet);
        _h["DeltaPhiJetJetDirect"]->fill(jetjet_dphi);
        _h["DeltaRapJetJetDirect"]->fill(jetjet_drap);
        _h["MassGammaJetJetDirect"]->fill(mphjetjet);

      }
      else if (photon_pt < jet_pt2)	{
        _h["ETGammaFragmentation"]->fill(photon_pt);
        _h["pTjetFragmentation"]->fill(jet_pt1);
        _h["pTjetFragmentation"]->fill(jet_pt2);
        _h["RapJetFragmentation"]->fill(fabs(jet1_y));
        _h["RapJetFragmentation"]->fill(fabs(jet2_y));
        _h["DeltaRapGammaJetFragmentation"]->fill(phjet1_drap);
        _h["DeltaRapGammaJetFragmentation"]->fill(phjet2_drap);
        _h["DeltaPhiGammaJetFragmentation"]->fill(phjet1_dphi);
        _h["DeltaPhiGammaJetFragmentation"]->fill(phjet2_dphi);
        _h["MassJetJetFragmentation"]->fill(mjetjet);
        _h["DeltaPhiJetJetFragmentation"]->fill(jetjet_dphi);
        _h["DeltaRapJetJetFragmentation"]->fill(jetjet_drap);
        _h["MassGammaJetJetFragmentation"]->fill(mphjetjet);
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      const double sf = crossSection() / picobarn / sumOfWeights();
	    scale(_h, sf);
    }


  private:

    map<string,Histo1DPtr> _h;
    const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0, 4.0, 5.0};

  };

  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ATLAS_2019_I1772071);

}