Rivet Analyses Reference

ATLAS_2020_I1790439

Higgs to 4-lepton at 13 TeV
Experiment: ATLAS (ATLAS)
Inspire ID: 1790439
Status: VALIDATED
Authors:
  • Rongkun Wang
  • Neil Warrack
  • Roger Naranjo
References:Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • routine expects Higgs to 4l processes including ggH, VBF, VH and ttH. The total production cross section including tau decays should be passed and the routine applies branching ratios.

Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^* \to 4\ell$ ($\ell = e, \mu$) decay channel. The results are based on proton−proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^* \to 4\ell$ process is measured to be $\sigma_\text{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\text{fid, SM} = 3.41 \pm 0.18$ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles. For fiducial cross sections, different bin represents cross section measurement in different channels. For opposite-flavor cross sections, the branching ratio of Higgs to $4\ell$ of 1.18e$^{-4}$ is used while for same-flavor cross sections, 1.3e$^{-4}$ is used, which takes interference into consideration. For all other cross sections, a combined branching ratio of 1.24e$^{-4}$ is used. In the routine, a Matrix Element calculation based on LO MG is used to assist the pairing of leptons. The Higgs to $ZZ$ branching ratio of 0.02641 is multiplied by the $ZZ$ to four lepton branching ratio 0.004736842 and used to scale all the histograms except for the $\mathtt{xs\_flavor}$ histograms where bins are scaled by the Higgs to four same flavour leptons branching ratio 0.00013 or the Higgs to $ee\mu\mu$ branching ratio 0.000118.

Source code: ATLAS_2020_I1790439.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/DressedLeptons.hh"

namespace Rivet {


  /// @brief H->ZZ->4l 13 TeV analysis
  class ATLAS_2020_I1790439 : public Analysis {
  public:

    /// Default constructor
    ATLAS_2020_I1790439()
      : Analysis("ATLAS_2020_I1790439"),
        MGME()
    { }


    void init() {

      /// Dressed leptons
      Cut cut_lep = (Cuts::abseta < 2.7) && (Cuts::pT > 5*GeV);
      PromptFinalState prompt_photons(Cuts::abspid == PID::PHOTON);
      PromptFinalState prompt_leptons(Cuts::abspid == PID::MUON || Cuts::abspid == PID::ELECTRON);
      DressedLeptons dLeptons(prompt_photons, prompt_leptons, 0.1, cut_lep, true);
      declare(dLeptons, "AllLeptons");

      /// Jet inputs
      FinalState fs_jet(Cuts::abseta < 5.0);
      VetoedFinalState jet_input(fs_jet);

      // reject all leptons dressed with only prompt photons from jet input
      FinalState leptons(Cuts::abspid == PID::ELECTRON || Cuts::abspid == PID::MUON);
      DressedLeptons reject_leptons(prompt_photons, leptons, 0.1, Cuts::open(), true);
      jet_input.addVetoOnThisFinalState(reject_leptons);

      // reject prompt invisibles, including from tau decays
      VetoedFinalState invis_fs_jet(fs_jet);
      invis_fs_jet.addVetoOnThisFinalState(VisibleFinalState(fs_jet));
      PromptFinalState invis_pfs_jet = PromptFinalState(invis_fs_jet, true);
      jet_input.addVetoOnThisFinalState(invis_pfs_jet);

      // declare jets
      FastJets jets(jet_input, FastJets::ANTIKT, 0.4, JetAlg::Muons::NONE, JetAlg::Invisibles::DECAY);
      declare(jets, "Jets");

      // Book histograms
      book(_h["xs_flavor"],           3, 1, 1);
      book(_h["H4l_pt"],              5, 1, 1);
      book(_h["Z1_m"],                7, 1, 1);
      book(_h["Z2_m"],                9, 1, 1);
      book(_h["abshiggs_y"],          11, 1, 1);
      book(_h["abscthstr"],           13, 1, 1);
      book(_h["cth1"],                15, 1, 1);
      book(_h["cth2"],                17, 1, 1);
      book(_h["phi"],                 19, 1, 1);
      book(_h["phi1"],                21, 1, 1);
      book(_h["n_jets"],              23, 1, 1);
      book(_h["n_jets_incl"],         25, 1, 1);
      book(_h["n_bjets"],             26, 1, 1);
      book(_h["jet_pt_leading"],      28, 1, 1);
      book(_h["jet_pt_subleading"],   30, 1, 1);
      book(_h["dijet_m"],             32, 1, 1);
      book(_h["dijet_deltaeta"],      34, 1, 1);
      book(_h["dijet_deltaphi"],      36, 1, 1);
      book(_h["pt4lj"],               38, 1, 1);
      book(_h["pt4ljj"],              40, 1, 1);
      book(_h["m4lj"],                42, 1, 1);
      book(_h["m4ljj"],               44, 1, 1);
      book(_h["m12vsm34"],            46, 1, 1);
      book(_h["m12vsm34_2l2m"],       48, 1, 1);
      book(_h["m12vsm34_2l2e"],       49, 1, 1);
      book(_h["pt4lvy4l_0_0p5"],      51, 1, 1);
      book(_h["pt4lvy4l_0p5_1"],      51, 1, 3);
      book(_h["pt4lvy4l_1_1p5"],      51, 1, 5);
      book(_h["pt4lvy4l_1p5_2p5"],    51, 1, 7);
      book(_h["pt4lvnjet_0"],         53, 1, 1);
      book(_h["pt4lvnjet_1"],         53, 1, 3);
      book(_h["pt4lvnjet_2"],         53, 1, 5);
      book(_h["pt4lvnjet_3"],         53, 1, 7);
      book(_h["pt4lvpt4lj"],          55, 1, 1);
      book(_h["pt4ljvm4lj"],          57, 1, 1);
      book(_h["pt4lvptj0"],           59, 1, 1);
      book(_h["ptj0vyj0"],            61, 1, 1);
      book(_h["ptj0vptj1"],           63, 1, 1);
      book(_h["Z1_m_4l"],             65, 1, 1);
      book(_h["Z1_m_2l2l"],           66, 1, 1);
      book(_h["Z2_m_4l"],             68, 1, 1);
      book(_h["Z2_m_2l2l"],           69, 1, 1);
      book(_h["phi_4l"],              71, 1, 1);
      book(_h["phi_2l2l"],            72, 1, 1);
      book(_h["m12vsm34_4l"],         74, 1, 1);
      book(_h["m12vsm34_2l2l"],       75, 1, 1);
    }

    /// Do the per-event analysis
    void analyze(const Event& e) {

      _h["xs_flavor"]->fill(9);

      const std::vector<DressedLepton>& all_leps = apply<DressedLeptons>(e, "AllLeptons").dressedLeptons();
      unsigned int n_parts = all_leps.size();
      unsigned int n_OSSF_pairs = 0;
      std::vector<Zstate> dileptons;
      Particles leptons;

      // Form Z candidate (opposite-sign same-flavour) lepton pairs
      for (unsigned int i = 0; i < n_parts; i++) {
        for (unsigned int j = i + 1; j < n_parts; j++) {
          if (isOSSF(all_leps[i], all_leps[j])){
            n_OSSF_pairs += 1;
            // Set positive charge first for later ME calculation
            if (all_leps[i].charge() > 0) {
              dileptons.push_back(Zstate( ParticlePair(all_leps[i], all_leps[j]) ));
            } else {
              dileptons.push_back(Zstate( ParticlePair(all_leps[j], all_leps[i]) ));
            }
          }
        }
      }

      // At least two pairs required to select ZZ->llll final state
      if (n_OSSF_pairs < 2) vetoEvent;


      // Form the quadruplet of two lepon pairs passing kinematics cuts
      std::vector<Quadruplet> quadruplets;
      for (unsigned int i = 0; i < dileptons.size(); i++) {
        for (unsigned int j = i+1; j < dileptons.size(); j++) {
          // Only use unique leptons
          if (isSame( dileptons[i].first , dileptons[j].first  )) continue;
          if (isSame( dileptons[i].first , dileptons[j].second )) continue;
          if (isSame( dileptons[i].second, dileptons[j].first  )) continue;
          if (isSame( dileptons[i].second, dileptons[j].second )) continue;

          leptons.clear();
          leptons.push_back( dileptons[i].first  );
          leptons.push_back( dileptons[i].second );
          leptons.push_back( dileptons[j].first  );
          leptons.push_back( dileptons[j].second );
          leptons = sortByPt(leptons);

          // Apply kinematic cuts
          if ( leptons[0].pt() < 20*GeV) continue;
          if ( leptons[1].pt() < 15*GeV) continue;
          if ( leptons[2].pt() < 10*GeV) continue;

          // Form the quad with pair closest to Z pole first
          if (dileptons[i].Zdist() < dileptons[j].Zdist()) {
            quadruplets.push_back(Quadruplet(dileptons[i], dileptons[j]));
          } else {
            quadruplets.push_back(Quadruplet(dileptons[j], dileptons[i]));
          }
        }
      }

      // Veto if no quad passes kinematic selection
      unsigned int n_quads = quadruplets.size();
      if(n_quads == 0) vetoEvent;

      // To resolve ambiguities in lepton pairing order quads by channel priority first, then m12 - mz and m34 - mz
      // The first in every channel is considered nominal
      std::sort(quadruplets.begin(), quadruplets.end(),
                [](const Quadruplet & q1, const Quadruplet & q2) {
                  if (q1.ch_priority == q2.ch_priority) {
                    // if rarely, Z1 the same distance from the Z pole, compare Z2
                    if (fabs( q1.Z1().Zdist() - q2.Z1().Zdist() ) < 1.e-5)
                      return q1.Z2().Zdist() < q2.Z2().Zdist();
                    else
                      return q1.Z1().Zdist() < q2.Z1().Zdist();
                  } else
                    return q1.ch_priority < q2.ch_priority;
                });


      // Select the best quad
      Particles leptons_sel4l;
      Quadruplet quadSel;
      float MEHZZ_max  = -999.;
      int prevQuadType = -999.;
      bool atleastonequadpassed = false;
      bool isNominalQuad        = false;
      bool extraLep             = false;

      for(unsigned int iquad = 0; iquad < n_quads; iquad++) {

        // Veto event if nominal quad was not selected in 4 lepton case
        if (n_parts == 4 && iquad > 0) vetoEvent;

        int quadType = (int) quadruplets[iquad].type();

        if (quadType != prevQuadType) {
          isNominalQuad = true;
        } else {
          isNominalQuad = false;
        }
        prevQuadType = quadType;

        Quadruplet & quad = quadruplets[iquad];

        // Z invariant mass requirements
        if (!(inRange(quad.Z1().mom().mass(), 50*GeV, 106*GeV))) continue;
        if (!(inRange(quad.Z2().mom().mass(), 12*GeV, 115*GeV))) continue;

        // Lepton separation and J/Psi veto
        bool b_pass_leptonseparation = true;
        bool b_pass_jpsi = true;
        leptons_sel4l.clear();
        leptons_sel4l.push_back(quad.Z1().first);
        leptons_sel4l.push_back(quad.Z1().second);
        leptons_sel4l.push_back(quad.Z2().first);
        leptons_sel4l.push_back(quad.Z2().second);

        for (unsigned int i = 0; i < 4; i++) {
          for (unsigned int j = i+1; j < 4; j++) {
            if ( deltaR( leptons_sel4l[i], leptons_sel4l[j]) < 0.1) b_pass_leptonseparation = false;
            if ( isOSSF(leptons_sel4l[i], leptons_sel4l[j]) && (leptons_sel4l[i].mom() + leptons_sel4l[j].mom()).mass() <= 5.*GeV) b_pass_jpsi = false;
          }
        }
        if(b_pass_leptonseparation == false || b_pass_jpsi == false) continue;

        // Only consider the event if at least one nominal quadruplet passes cuts
        if (isNominalQuad) atleastonequadpassed = true;

        // Direct selection for case with only 4 prompt leptons
        if (n_parts == 4 ) {
          quadSel = quad;
          break;
        }

        // In cases with extra leptons meeting further requirements use max ME to select quad
        float MEHZZ;
        if (quadType == 0 || quadType == 1) MEHZZ = MGME.Compute(quadruplets[iquad]) / 2;
        else MEHZZ = MGME.Compute(quadruplets[iquad]);

        // Check leptons other than the ones from the channel's nominal quadruplet
        // and don't need to recheck extraLep for a second channel
        if(isNominalQuad && !extraLep) {
          for (const Particle &lep: all_leps) {
            bool lep_in_quad = false;
            bool lep_too_close = false;

            // pT requirement
            if (lep.pt() < 12*GeV) continue;

            // skip if lepton included in quad or not isolated from quad leptons
            for (unsigned int i = 0; i < 4; i++) {
              if (isSame(lep, leptons_sel4l[i])) lep_in_quad = true ;
              if (deltaR(lep, leptons_sel4l[i]) < 0.1) lep_too_close = true ;
            }
            if (lep_in_quad || lep_too_close) continue;

            extraLep = true;
            break;
          }

          if(!extraLep) {
            // In case of no suitable extra leptons select the quad directly
            quadSel = quad;
            break;
          }
        }

        // Use ME to select the quad when there are extra leptons
        if (MEHZZ > MEHZZ_max) {
          quadSel = quad;
          MEHZZ_max = MEHZZ;
        }
      }

      if(!atleastonequadpassed) vetoEvent;

      // Veto if quad not in Higgs mass window
      FourMomentum Higgs = quadSel.mom();
      double H4l_mass     = Higgs.mass();
      if (!(inRange(H4l_mass, 105.*GeV, 160.*GeV))) vetoEvent;

      // Higgs observables
      double H4l_pt       = Higgs.pt();
      double H4l_rapidity = Higgs.absrapidity();
      LorentzTransform HRF_boost = LorentzTransform::mkFrameTransformFromBeta(Higgs.betaVec());

      FourMomentum Z1_in_HRF = HRF_boost.transform( quadSel.Z1().mom() );
      FourMomentum Z2_in_HRF = HRF_boost.transform( quadSel.Z2().mom() );
      double H4l_costheta = fabs(cos( Z1_in_HRF.theta()));
      double H4l_m12      = quadSel.Z1().mom().mass();
      double H4l_m34      = quadSel.Z2().mom().mass();

      FourMomentum v11_HRF = HRF_boost.transform( quadSel.Z1().second.mom() );
      FourMomentum v12_HRF = HRF_boost.transform( quadSel.Z1().first.mom() );
      FourMomentum v21_HRF = HRF_boost.transform( quadSel.Z2().second.mom() );
      FourMomentum v22_HRF = HRF_boost.transform( quadSel.Z2().first.mom() );

      Vector3 v11 = v11_HRF.p3();
      Vector3 v12 = v12_HRF.p3();
      Vector3 v21 = v21_HRF.p3();
      Vector3 v22 = v22_HRF.p3();
      Vector3 nz(0, 0, 1);
      Vector3 qz1 = Z1_in_HRF.p3();
      Vector3 n1p = v11.cross(v12).unit();
      Vector3 n2p = v21.cross(v22).unit();
      Vector3 nscp = nz.cross(qz1).unit();

      double H4l_Phi  = qz1.dot(n1p.cross(n2p)) / fabs(qz1.dot(n1p.cross(n2p))) * acos(- n1p.dot(n2p));
      double H4l_Phi1 = qz1.dot(n1p.cross(nscp)) / fabs(qz1.dot(n1p.cross(nscp))) * acos( n1p.dot(nscp));

      LorentzTransform Z1RF_boost = LorentzTransform::mkFrameTransformFromBeta(Z1_in_HRF.betaVec());
      LorentzTransform Z2RF_boost = LorentzTransform::mkFrameTransformFromBeta(Z2_in_HRF.betaVec());

      FourMomentum Z1_in_Z2RF = Z2RF_boost.transform( Z1_in_HRF );
      FourMomentum Z2_in_Z1RF = Z1RF_boost.transform( Z2_in_HRF );

      Vector3 Z1_p3 = Z1_in_Z2RF.p3();
      Vector3 Z2_p3 = Z2_in_Z1RF.p3();

      FourMomentum n_Z1 = Z1RF_boost.transform( v11_HRF );
      FourMomentum n_Z2 = Z2RF_boost.transform( v21_HRF );

      // angle is negative with its Z
      double H4l_cth1 = - cos( n_Z1.p3().angle(Z2_p3));
      double H4l_cth2 = - cos( n_Z2.p3().angle(Z1_p3));


      // Jet observables
      Jets jets = apply<FastJets>(e, "Jets").jetsByPt(Cuts::pT > 30*GeV && Cuts::absrap < 4.4);

      // discard jets which overlap leptons
      for (const Particle& l: all_leps) ifilter_discard(jets, deltaRLess(l, 0.1));

      // collect b-tagged jets
      const Jets b_jets_btagged = filter_select(jets, hasBTag(Cuts::pT>5*GeV));

      unsigned int n_bjets = b_jets_btagged.size();
      unsigned int n_jets = jets.size();
      double leading_jet_pt = (n_jets > 0 ? jets[0].pT() : 0);
      double leading_jet_y = (n_jets > 0 ? jets[0].absrapidity() : 0);
      double subleading_jet_pt = (n_jets > 1 ? jets[1].pT() : 0);

      FourMomentum Dijets = {0,0,0,0};
      if(n_jets > 1) Dijets = jets[0].mom() + jets[1].mom();
      double mjj = (n_jets > 1 ? Dijets.mass() : -999);

      double dphijj = -1;
      if(n_jets > 1){
        if(jets[0].eta() >  jets[1].eta()) dphijj = jets[0].phi() - jets[1].phi();
        else dphijj = jets[1].phi() - jets[0].phi();
        if(dphijj < 0) dphijj = dphijj + TWOPI;
      }

      double detajj = (n_jets > 1 ? fabs(jets[0].eta() -  jets[1].eta()): -1);

      FourMomentum m4lj, m4ljj;
      if (n_jets > 0) m4lj  = Higgs + jets[0];
      if (n_jets > 1) m4ljj = Higgs + Dijets;

      double H4l_m4lj = m4lj.mass();
      double H4l_m4ljj = m4ljj.mass();
      double H4l_pt4lj = m4lj.pt();
      double H4l_pt4ljj = m4ljj.pt();

      // Fill histograms
      // Branching ratios for 4l and 2l2l channels
      double BR_SF = 0.00013;
      double BR_OF = 0.000118;
      if (inRange(H4l_mass, 115.*GeV, 130.*GeV)){
        if (quadSel.type() == Quadruplet::FlavCombi::mm
            || quadSel.type() == Quadruplet::FlavCombi::ee ) {
          _h["xs_flavor"]->fill((int)quadSel.type()+1, BR_SF);
          _h["xs_flavor"]->fill(5, BR_SF);
        }
        else if (quadSel.type() == Quadruplet::FlavCombi::em
                 || quadSel.type() == Quadruplet::FlavCombi::me ) {
          _h["xs_flavor"]->fill((int)quadSel.type()+1, BR_OF);
          _h["xs_flavor"]->fill(6, BR_OF);
        }
        _h["xs_flavor"]->fill(7, Br);
        _h["xs_flavor"]->fill(8, Br);
      }

      // Higgs variables
      for(const auto & p: std::map<std::string, double>{
          {"H4l_pt",     H4l_pt},
            {"Z1_m",       H4l_m12},
              {"Z2_m",       H4l_m34},
                {"abshiggs_y", H4l_rapidity},
                  {"abscthstr",  H4l_costheta},
                    {"cth1",       H4l_cth1},
                      {"cth2",       H4l_cth2},
                        {"phi",        H4l_Phi},
                          {"phi1",       H4l_Phi1}})
        {
          _h[ p.first ]->fill(p.second);
        }

      // Jet variables
      if (n_jets <= 2) _h[ "n_jets" ]->fill(n_jets);
      else _h[ "n_jets" ]->fill(3.0);

      _h[ "n_jets_incl" ]->fill(0.0);
      if (n_jets >= 1) _h[ "n_jets_incl" ]->fill(1.0);
      if (n_jets >= 2) _h[ "n_jets_incl" ]->fill(2.0);
      if (n_jets >= 3) _h[ "n_jets_incl" ]->fill(3.0);

      if (n_jets == 0) _h[ "n_bjets" ]->fill(1.0);
      else if (n_bjets == 0) _h[ "n_bjets" ]->fill(2.0);
      else if (n_bjets >= 1) _h[ "n_bjets" ]->fill(3.0);

      if (n_jets == 0) {
        _h[ "jet_pt_leading" ]->fill(29.5);
        _h[ "pt4lj" ]->fill(-0.5);
        _h[ "m4lj" ]->fill(119.5);
      }
      else if(n_jets >= 1){
        _h[ "jet_pt_leading" ]->fill(leading_jet_pt);
        _h[ "pt4lj" ]->fill(H4l_pt4lj);
        _h[ "m4lj" ]->fill(H4l_m4lj);
      }

      if (n_jets < 2) {
        _h[ "jet_pt_subleading" ]->fill(29.5);
        _h[ "dijet_m" ]->fill(-0.5);
        _h[ "dijet_deltaeta" ]->fill(-0.5);
        _h[ "dijet_deltaphi" ]->fill(-0.5);
        _h[ "pt4ljj" ]->fill(-0.5);
        _h[ "m4ljj" ]->fill(179.5);
      }
      else if (n_jets >= 2) {
        _h[ "jet_pt_subleading" ]->fill(subleading_jet_pt);
        _h[ "dijet_m" ]->fill(mjj);
        _h[ "dijet_deltaeta" ]->fill(detajj);
        _h[ "dijet_deltaphi" ]->fill(dphijj);
        _h[ "pt4ljj" ]->fill(H4l_pt4ljj);
        _h[ "m4ljj" ]->fill(H4l_m4ljj);
      }

      // m12 vs m34 (all channels)
      if(H4l_m12 < 82 && H4l_m34 < 32) _h["m12vsm34"]->fill(1.);
      else if(H4l_m12 < 74 && H4l_m34 > 32) _h["m12vsm34"]->fill(2.);
      else if(H4l_m12 > 74 && H4l_m34 > 32) _h["m12vsm34"]->fill(3.);
      else if(H4l_m12 > 82 && H4l_m34 < 32 && H4l_m34 > 24) _h["m12vsm34"]->fill(4.);
      else if(H4l_m12 > 82 && H4l_m34 < 24) _h["m12vsm34"]->fill(5.);

      if (quadSel.type() == Quadruplet::FlavCombi::em
          || quadSel.type() == Quadruplet::FlavCombi::mm ){
        if(H4l_m12 < 82 && H4l_m34 < 32) _h["m12vsm34_2l2m"]->fill(1.);
        else if(H4l_m12 < 74 && H4l_m34 > 32) _h["m12vsm34_2l2m"]->fill(2.);
        else if(H4l_m12 > 74 && H4l_m34 > 32) _h["m12vsm34_2l2m"]->fill(3.);
        else if(H4l_m12 > 82 && H4l_m34 < 32 && H4l_m34 > 24) _h["m12vsm34_2l2m"]->fill(4.);
        else if(H4l_m12 > 82 && H4l_m34 < 24) _h["m12vsm34_2l2m"]->fill(5.);
      }
      else if (quadSel.type() == Quadruplet::FlavCombi::me
               || quadSel.type() == Quadruplet::FlavCombi::ee ){
        if(H4l_m12 < 82 && H4l_m34 < 32) _h["m12vsm34_2l2e"]->fill(1.);
        else if(H4l_m12 < 74 && H4l_m34 > 32) _h["m12vsm34_2l2e"]->fill(2.);
        else if(H4l_m12 > 74 && H4l_m34 > 32) _h["m12vsm34_2l2e"]->fill(3.);
        else if(H4l_m12 > 82 && H4l_m34 < 32 && H4l_m34 > 24) _h["m12vsm34_2l2e"]->fill(4.);
        else if(H4l_m12 > 82 && H4l_m34 < 24) _h["m12vsm34_2l2e"]->fill(5.);
      }

      // m12 vs m34 (4l channels only)
      if (quadSel.type() == Quadruplet::FlavCombi::ee
          || quadSel.type() == Quadruplet::FlavCombi::mm ){
        if(H4l_m12 < 82 && H4l_m34 < 32) _h["m12vsm34_4l"]->fill(1.);
        else if(H4l_m12 < 74 && H4l_m34 > 32) _h["m12vsm34_4l"]->fill(2.);
        else if(H4l_m12 > 74 && H4l_m34 > 32) _h["m12vsm34_4l"]->fill(3.);
        else if(H4l_m12 > 82 && H4l_m34 < 32 && H4l_m34 > 24) _h["m12vsm34_4l"]->fill(4.);
        else if(H4l_m12 > 82 && H4l_m34 < 24) _h["m12vsm34_4l"]->fill(5.);
        _h["Z1_m_4l"]->fill(H4l_m12);
        _h["Z2_m_4l"]->fill(H4l_m34);
        _h["phi_4l"]->fill(H4l_Phi);
      }

      // m12 vs m34 (2l2l channels only)
      if (quadSel.type() == Quadruplet::FlavCombi::me
          || quadSel.type() == Quadruplet::FlavCombi::em ){
        if(H4l_m12 < 82 && H4l_m34 < 32) _h["m12vsm34_2l2l"]->fill(1.);
        else if(H4l_m12 < 74 && H4l_m34 > 32) _h["m12vsm34_2l2l"]->fill(2.);
        else if(H4l_m12 > 74 && H4l_m34 > 32) _h["m12vsm34_2l2l"]->fill(3.);
        else if(H4l_m12 > 82 && H4l_m34 < 32 && H4l_m34 > 24) _h["m12vsm34_2l2l"]->fill(4.);
        else if(H4l_m12 > 82 && H4l_m34 < 24) _h["m12vsm34_2l2l"]->fill(5.);
        _h["Z1_m_2l2l"]->fill(H4l_m12);
        _h["Z2_m_2l2l"]->fill(H4l_m34);
        _h["phi_2l2l"]->fill(H4l_Phi);
      }

      // 2d differential variables
      if (0 < H4l_rapidity && H4l_rapidity < 0.5) _h["pt4lvy4l_0_0p5"]->fill(H4l_pt);
      else if (0.5 < H4l_rapidity && H4l_rapidity < 1) _h["pt4lvy4l_0p5_1"]->fill(H4l_pt);
      else if (1 < H4l_rapidity && H4l_rapidity < 1.5) _h["pt4lvy4l_1_1p5"]->fill(H4l_pt);
      else if (1.5 < H4l_rapidity && H4l_rapidity < 2.5) _h["pt4lvy4l_1p5_2p5"]->fill(H4l_pt);

      if (n_jets == 0) _h["pt4lvnjet_0"]->fill(H4l_pt);
      else if (n_jets == 1) _h["pt4lvnjet_1"]->fill(H4l_pt);
      else if (n_jets == 2) _h["pt4lvnjet_2"]->fill(H4l_pt);
      else if (n_jets > 2) _h["pt4lvnjet_3"]->fill(H4l_pt);

      if (n_jets == 0) {
        _h["pt4lvptj0"]->fill(1.);
        _h["pt4lvpt4lj"]->fill(1.);
        _h["pt4ljvm4lj"]->fill(1.);
        _h["ptj0vptj1"]->fill(1.);
        _h["ptj0vyj0"]->fill(1.);
      } else {

        if (     0  < H4l_pt4lj && H4l_pt4lj < 60  && 0   < H4l_pt && H4l_pt < 120)  _h["pt4lvpt4lj"]->fill(2.);
        else if (0  < H4l_pt4lj && H4l_pt4lj < 60  && 120 < H4l_pt && H4l_pt < 350)  _h["pt4lvpt4lj"]->fill(3.);
        else if (60 < H4l_pt4lj && H4l_pt4lj < 350 && 0   < H4l_pt && H4l_pt < 120)  _h["pt4lvpt4lj"]->fill(4.);
        else if (60 < H4l_pt4lj && H4l_pt4lj < 350 && 120 < H4l_pt && H4l_pt < 350)  _h["pt4lvpt4lj"]->fill(5.);

        if (     120 < H4l_m4lj && H4l_m4lj < 220  && 0   < H4l_pt4lj && H4l_pt4lj < 350) _h["pt4ljvm4lj"]->fill(2.);
        else if (220 < H4l_m4lj && H4l_m4lj < 350  && 0   < H4l_pt4lj && H4l_pt4lj < 60)  _h["pt4ljvm4lj"]->fill(3.);
        else if (220 < H4l_m4lj && H4l_m4lj < 350  && 60  < H4l_pt4lj && H4l_pt4lj < 350) _h["pt4ljvm4lj"]->fill(4.);
        else if (350 < H4l_m4lj && H4l_m4lj < 2000 && 0   < H4l_pt4lj && H4l_pt4lj < 350) _h["pt4ljvm4lj"]->fill(5.);

        if (     30 < leading_jet_pt  && leading_jet_pt < 60  && 0   < H4l_pt && H4l_pt < 80)  _h["pt4lvptj0"]->fill(2.);
        else if (30 < leading_jet_pt  && leading_jet_pt < 60  && 80  < H4l_pt && H4l_pt < 350) _h["pt4lvptj0"]->fill(3.);
        else if (60 < leading_jet_pt  && leading_jet_pt < 120 && 0   < H4l_pt && H4l_pt < 120) _h["pt4lvptj0"]->fill(4.);
        else if (60 < leading_jet_pt  && leading_jet_pt < 120 && 120 < H4l_pt && H4l_pt < 350) _h["pt4lvptj0"]->fill(5.);
        else if (120 < leading_jet_pt && leading_jet_pt < 350 && 0   < H4l_pt && H4l_pt < 120) _h["pt4lvptj0"]->fill(6.);
        else if (120 < leading_jet_pt && leading_jet_pt < 350 && 120 < H4l_pt && H4l_pt < 350) _h["pt4lvptj0"]->fill(7.);

        if (     30 < leading_jet_pt && leading_jet_pt < 120 &&  0   < leading_jet_y && leading_jet_y < 0.8) _h["ptj0vyj0"]->fill(2.);
        else if (30 < leading_jet_pt && leading_jet_pt < 120 &&  0.8 < leading_jet_y && leading_jet_y < 1.7) _h["ptj0vyj0"]->fill(3.);
        else if (30 < leading_jet_pt && leading_jet_pt < 120 &&  1.7 < leading_jet_y                       ) _h["ptj0vyj0"]->fill(4.);
        else if (120 < leading_jet_pt && leading_jet_pt < 350 && 0   < leading_jet_y && leading_jet_y < 1.7) _h["ptj0vyj0"]->fill(5.);
        else if (120 < leading_jet_pt && leading_jet_pt < 350 && 1.7 < leading_jet_y                       ) _h["ptj0vyj0"]->fill(6.);

        if (     n_jets == 1 && 30 < leading_jet_pt && leading_jet_pt < 60)  _h["ptj0vptj1"]->fill(2.);
        else if (n_jets == 1 && 60 < leading_jet_pt && leading_jet_pt < 350) _h["ptj0vptj1"]->fill(3.);
        else if (30 < leading_jet_pt && leading_jet_pt < 60  && 30 < subleading_jet_pt && subleading_jet_pt < 60)  _h["ptj0vptj1"]->fill(4.);
        else if (60 < leading_jet_pt && leading_jet_pt < 350 && 30 < subleading_jet_pt && subleading_jet_pt < 60)  _h["ptj0vptj1"]->fill(5.);
        else if (60 < leading_jet_pt && leading_jet_pt < 350 && 60 < subleading_jet_pt && subleading_jet_pt < 350) _h["ptj0vptj1"]->fill(6.);
      }
    }


    void finalize() {

      const double sf = crossSection() / femtobarn  / sumOfWeights();
      for (auto hist : _h) {
        if( hist.first == "xs_flavor"){
          scale(hist.second, sf);
        } else {
          scale(hist.second, sf * Br);
        }

        // Scale individual bins which have been widened for visability
        if (hist.first == "jet_pt_leading" || hist.first == "jet_pt_subleading") {
          hist.second->bin(0).scaleW(30);
        }
        else if (hist.first == "dijet_m") {
          hist.second->bin(0).scaleW(500);
        }
        else if (hist.first == "pt4lj" || hist.first == "pt4ljj") {
          hist.second->bin(0).scaleW(60);
        }
        else if (hist.first == "m4lj") {
          hist.second->bin(0).scaleW(120);
        }
        else if (hist.first == "m4ljj") {
          hist.second->bin(0).scaleW(180);
        }

      }
    }

  private:

    // Br(H-->ZZ) * BR(ZZ-->4l)
    const double Br = 0.02641 *  0.004736842;

    map<string, Histo1DPtr> _h;

    /// Generic Z candidate
    struct Zstate : public ParticlePair {
      Zstate() { }
      Zstate(ParticlePair _particlepair) : ParticlePair(_particlepair) { }
      FourMomentum mom() const { return first.momentum() + second.momentum(); }
      double Zdist() const { return fabs(mom().mass() -  91.1876*GeV); }
      int flavour() const { return first.abspid(); }
    };

    /// Generic quadruplet
    struct Quadruplet {

      // find out which type it is: 4mu = 0, 4e = 1, 2mu2e = 2, 2e2mu = 3 (mm, ee, me, em)
      // channel priority is 4m, 2e2m, 2m2e, 4e
      enum class FlavCombi { mm=0, ee, me, em, undefined };

      Quadruplet() { }
      Quadruplet(Zstate z1, Zstate z2) : _z1(z1), _z2(z2) {
        if (     _z1.flavour() == 13 && _z2.flavour() == 13) { _type = FlavCombi::mm; ch_priority = 0;}
        else if (_z1.flavour() == 11 && _z2.flavour() == 11) { _type = FlavCombi::ee; ch_priority = 3;}
        else if (_z1.flavour() == 13 && _z2.flavour() == 11) { _type = FlavCombi::me; ch_priority = 2;}
        else if (_z1.flavour() == 11 && _z2.flavour() == 13) { _type = FlavCombi::em; ch_priority = 1;}
        else  {_type = FlavCombi::undefined;}
      }

      Quadruplet(Quadruplet const & quad) :
        _z1(quad._z1),
        _z2(quad._z2),
        _type(quad._type),
        ch_priority(quad.ch_priority) {}

      Zstate _z1, _z2;
      FlavCombi _type;
      int ch_priority;

      const Zstate& Z1() const { return _z1; }
      const Zstate& Z2() const { return _z2; }
      FourMomentum mom() const { return _z1.mom() + _z2.mom(); }
      FlavCombi type() const {return _type; }
    };


    // save and calculate parameters
    class Parameters_heft {

    public:

      // Model parameters independent of aS
      double mdl_WH, mdl_WZ,
        aS, mdl_Gf, aEWM1, mdl_MH, mdl_MZ, mdl_MTA, mdl_MT, mdl_MB,
        mdl_MP, mdl_conjg__CKM3x3, mdl_CKM3x3, mdl_MZ__exp__2, mdl_MZ__exp__4,
        mdl_MH__exp__4, mdl_MT__exp__4, mdl_MH__exp__2,
        mdl_MT__exp__2,
        mdl_MH__exp__6, mdl_MT__exp__6, mdl_aEW, mdl_MW, mdl_ee,
        mdl_MW__exp__2, mdl_sw2, mdl_cw,
        mdl_sw,
        mdl_v, mdl_ee__exp__2;
      std::complex<double> mdl_complexi;
      // Model parameters dependent on aS
      double mdl_GH ;
      // Model couplings independent of aS
      std::complex<double> GC_40, GC_54, GC_73;
      // Model couplings dependent on aS
      std::complex<double> GC_13;

      // Set parameters and couplings that are unchanged during the run
      Parameters_heft() {
        mdl_WH =  6.382339e-03;
        mdl_WZ =  2.441404e+00;
        aS =  1.180000e-01;
        mdl_Gf =  1.166390e-05;
        aEWM1 =  1.325070e+02;
        mdl_MH = 1.250000e+02;
        mdl_MZ = 9.118800e+01;
        mdl_MT = 1.730000e+02;
        mdl_complexi = std::complex<double> (0., 1.);
        mdl_MZ__exp__2 = pow(mdl_MZ, 2.);
        mdl_MZ__exp__4 = pow(mdl_MZ, 4.);
        mdl_MH__exp__2 = pow(mdl_MH, 2.);
        mdl_MT__exp__4 = pow(mdl_MT, 4.);
        mdl_MH__exp__4 = pow(mdl_MH, 4.);
        mdl_MT__exp__2 = pow(mdl_MT, 2.);
        mdl_MH__exp__6 = pow(mdl_MH, 6.);
        mdl_MT__exp__6 = pow(mdl_MT, 6.);
        mdl_aEW = 1./aEWM1;
        mdl_MW = sqrt(mdl_MZ__exp__2/2. + sqrt(mdl_MZ__exp__4/4. - (mdl_aEW * M_PI * mdl_MZ__exp__2)/(mdl_Gf * sqrt(2.))));                                     mdl_ee = 2. * sqrt(mdl_aEW) * sqrt(M_PI);
        mdl_MW__exp__2 = pow(mdl_MW, 2.);
        mdl_sw2 = 1. - mdl_MW__exp__2/mdl_MZ__exp__2;
        mdl_cw = sqrt(1. - mdl_sw2);
        mdl_sw = sqrt(mdl_sw2);
        mdl_v = (2. * mdl_MW * mdl_sw)/mdl_ee;
        mdl_ee__exp__2 = pow(mdl_ee, 2.);
        GC_40 = -(mdl_ee * mdl_complexi * mdl_cw)/(2. * mdl_sw);
        GC_54 = (mdl_ee * mdl_complexi * mdl_sw)/(2. * mdl_cw);
        GC_73 = mdl_ee__exp__2 * mdl_complexi * mdl_v + ((1. - mdl_sw2) * mdl_ee__exp__2 * mdl_complexi * mdl_v)/(2. * mdl_sw2) +
          (mdl_ee__exp__2 * mdl_complexi * mdl_sw2 * mdl_v)/(2. * (1. - mdl_sw2));
      }

      // Set Mass
      void set4lepMass(double m_m4l){
        mdl_MH = m_m4l;
        mdl_WH = setWidth(m_m4l);
        mdl_MH__exp__2 = pow(mdl_MH, 2.);
        mdl_MH__exp__4 = pow(mdl_MH, 4.);
        mdl_MH__exp__6 = pow(mdl_MH, 6.);
        mdl_GH = -(4 * aS * M_PI * (1. + (13. * mdl_MH__exp__6)/(16800. * mdl_MT__exp__6) + mdl_MH__exp__4/(168. * mdl_MT__exp__4) +
                                    (7. * mdl_MH__exp__2)/(120. * mdl_MT__exp__2)))/(12. * pow(M_PI, 2.) * mdl_v);
        GC_13 = -(mdl_complexi * mdl_GH);
      }

    private:

      // Set Width
      long double setWidth(double m_m4l){
        long double Higgs_width_Poly_Fit_Zone1_coeff0  = -1.450308902710193E+03;
        long double Higgs_width_Poly_Fit_Zone1_coeff1  =  1.129291251156317E+02;
        long double Higgs_width_Poly_Fit_Zone1_coeff2  = -3.893063071316150E+00;
        long double Higgs_width_Poly_Fit_Zone1_coeff3  =  7.798666884832531E-02;
        long double Higgs_width_Poly_Fit_Zone1_coeff4  = -1.000455877406390E-03;
        long double Higgs_width_Poly_Fit_Zone1_coeff5  =  8.523735379647125E-06;
        long double Higgs_width_Poly_Fit_Zone1_coeff6  = -4.823164754652171E-08;
        long double Higgs_width_Poly_Fit_Zone1_coeff7  =  1.747954506786346E-10;
        long double Higgs_width_Poly_Fit_Zone1_coeff8  = -3.681723572169337E-13;
        long double Higgs_width_Poly_Fit_Zone1_coeff9  =  3.434207075968898E-16;

        long double Higgs_width_Poly_Fit_Zone2_coeff0  =  2.563291882845993E+02;
        long double Higgs_width_Poly_Fit_Zone2_coeff1  = -1.037082025855304E+01;
        long double Higgs_width_Poly_Fit_Zone2_coeff2  =  1.780260502696301E-01;
        long double Higgs_width_Poly_Fit_Zone2_coeff3  = -1.720311784419889E-03;
        long double Higgs_width_Poly_Fit_Zone2_coeff4  =  1.038418605369741E-05;
        long double Higgs_width_Poly_Fit_Zone2_coeff5  = -4.092496883922424E-08;
        long double Higgs_width_Poly_Fit_Zone2_coeff6  =  1.067667966800388E-10;
        long double Higgs_width_Poly_Fit_Zone2_coeff7  = -1.823343280081685E-13;
        long double Higgs_width_Poly_Fit_Zone2_coeff8  =  1.955637395597351E-16;
        long double Higgs_width_Poly_Fit_Zone2_coeff9  = -1.193287048560413E-19;
        long double Higgs_width_Poly_Fit_Zone2_coeff10 =  3.156196649452213E-23;

        long double Higgs_width_Poly_Fit_Zone3_coeff0  = -5.255605465437446E+02;
        long double Higgs_width_Poly_Fit_Zone3_coeff1  =  1.036972988796150E+01;
        long double Higgs_width_Poly_Fit_Zone3_coeff2  = -6.817022987365029E-02;
        long double Higgs_width_Poly_Fit_Zone3_coeff3  =  1.493275723660056E-04;

        long double m_m4l__2 = m_m4l * m_m4l;
        long double m_m4l__3 = m_m4l__2 * m_m4l;

        if( m_m4l < 156.5 ) return ( Higgs_width_Poly_Fit_Zone1_coeff0
                                     + Higgs_width_Poly_Fit_Zone1_coeff1 * m_m4l
                                     + Higgs_width_Poly_Fit_Zone1_coeff2 * m_m4l__2
                                     + Higgs_width_Poly_Fit_Zone1_coeff3 * m_m4l__3
                                     + Higgs_width_Poly_Fit_Zone1_coeff4 * m_m4l__2 * m_m4l__2
                                     + Higgs_width_Poly_Fit_Zone1_coeff5 * m_m4l__2 * m_m4l__3
                                     + Higgs_width_Poly_Fit_Zone1_coeff6 * m_m4l__2 * m_m4l__2 * m_m4l__2
                                     + Higgs_width_Poly_Fit_Zone1_coeff7 * m_m4l__2 * m_m4l__2 * m_m4l__3
                                     + Higgs_width_Poly_Fit_Zone1_coeff8 * m_m4l__2 * m_m4l__2 * m_m4l__2 * m_m4l__2
                                     + Higgs_width_Poly_Fit_Zone1_coeff9 * m_m4l__2 * m_m4l__2 * m_m4l__2 * m_m4l__3 );
        else if( m_m4l >= 156.5 && m_m4l <= 162 ) return ( Higgs_width_Poly_Fit_Zone3_coeff0
                                                           + Higgs_width_Poly_Fit_Zone3_coeff1 * m_m4l
                                                           + Higgs_width_Poly_Fit_Zone3_coeff2 * m_m4l__2
                                                           + Higgs_width_Poly_Fit_Zone3_coeff3 * m_m4l__3 );
        else return ( Higgs_width_Poly_Fit_Zone2_coeff0
                      + Higgs_width_Poly_Fit_Zone2_coeff1 * m_m4l
                      + Higgs_width_Poly_Fit_Zone2_coeff2 * m_m4l__2
                      + Higgs_width_Poly_Fit_Zone2_coeff3 * m_m4l__3
                      + Higgs_width_Poly_Fit_Zone2_coeff4 * m_m4l__2 * m_m4l__2
                      + Higgs_width_Poly_Fit_Zone2_coeff5 * m_m4l__2 * m_m4l__3
                      + Higgs_width_Poly_Fit_Zone2_coeff6 * m_m4l__2 * m_m4l__2 * m_m4l__2
                      + Higgs_width_Poly_Fit_Zone2_coeff7 * m_m4l__2 * m_m4l__2 * m_m4l__3
                      + Higgs_width_Poly_Fit_Zone2_coeff8 * m_m4l__2 * m_m4l__2 * m_m4l__2 * m_m4l__2
                      + Higgs_width_Poly_Fit_Zone2_coeff9 * m_m4l__2 * m_m4l__2 * m_m4l__2 * m_m4l__3
                      + Higgs_width_Poly_Fit_Zone2_coeff10 * m_m4l__2 * m_m4l__2 * m_m4l__2 * m_m4l__2 * m_m4l__2 );
      }

    };  // class Parameters_heft

    // calculate LO ME
    class CPPProcess_P0_Sigma_heft_pp_H_ZZ_4l_heft_gg_epemmupmum {

    public:

      // Constructor.
      CPPProcess_P0_Sigma_heft_pp_H_ZZ_4l_heft_gg_epemmupmum() :
        pars(),
        pout(4, vector<double>(4, 0.)) { }

      // Destructor.
      virtual ~CPPProcess_P0_Sigma_heft_pp_H_ZZ_4l_heft_gg_epemmupmum() {}

      float Compute(const Quadruplet& quad) {
        FourMomentum cms = quad.mom();
        // use the cms mass as a value for MH
        pars.set4lepMass(cms.mass());

        const FourMomentum* fermionsMom[4] = {
          &quad.Z1().first.momentum(),
          &quad.Z1().second.momentum(),
          &quad.Z2().first.momentum(),
          &quad.Z2().second.momentum()
        };

        // boost to center-of-mass frame
        LorentzTransform HRF_boost = LorentzTransform::mkFrameTransformFromBeta(cms.betaVec());
        for(std::size_t i = 0; i < 4; ++i) {
          FourMomentum tmpMom = HRF_boost.transform(*fermionsMom[i]);
          pout[i][0] = tmpMom.E();
          pout[i][1] = tmpMom.px();
          pout[i][2] = tmpMom.py();
          pout[i][3] = tmpMom.pz();
        }

        // Evaluate matrix element
        return sigmaKin();
      }

    private:

      // Calculate flavour-independent parts of cross section. Evaluate |M|^2, part independent of
      // incoming flavour. Return matrix element

      double sigmaKin() {
        // Local variables and constants
        static const int ncomb = 16;
        // Helicities for the process
        static const int helicities[ncomb][4] = {
          {-1, -1, -1, -1}, {-1, -1, -1,  1}, {-1, -1,  1, -1}, {-1, -1,  1,  1},
          {-1,  1, -1, -1}, {-1,  1, -1,  1}, {-1,  1,  1, -1}, {-1,  1,  1,  1},
          { 1, -1, -1, -1}, { 1, -1, -1,  1}, { 1, -1,  1, -1}, { 1, -1,  1,  1},
          { 1,  1, -1, -1}, { 1,  1, -1,  1}, { 1,  1,  1, -1}, { 1,  1,  1,  1}
        };

        // Reset the matrix elements
        double matrix_element = 0.;

        // Calculate the matrix element for all helicities
        for(int ihel = 0; ihel < ncomb; ihel++) {
          matrix_element += matrix_gg_h_h_zz_z_epem_z_mupmum(helicities[ihel]);
        }

        // Denominators: spins, colors and identical particles
        return matrix_element /= 128.;
      }

      // Calculate wavefunctions and matrix elements for all subprocesses
      double matrix_gg_h_h_zz_z_epem_z_mupmum(const int hel[]){
        // Calculate all wavefunctions
        ixx(pout[0], hel[0], w[2], true);
        ixx(pout[1], hel[1], w[3], false);
        FFV2_4_3(w[2], w[3], pars.GC_40, pars.GC_54,
                 pars.mdl_MZ, pars.mdl_WZ, w[4]);
        ixx(pout[2], hel[2], w[5], true);
        ixx(pout[3], hel[3], w[6], false);
        FFV2_4_3(w[5], w[6], pars.GC_40, pars.GC_54,
                 pars.mdl_MZ, pars.mdl_WZ, w[7]);
        VVS2_3(w[4], w[7], pars.GC_73, pars.mdl_MH, pars.mdl_WH, w[8]);

        // Calculate all amplitudes
        // Amplitude(s) for diagram number 0
        std::complex<double> amp = VVS3_0(pars.mdl_MH, w[8], pars.GC_13);

        // Calculate color flows
        // Sum and square the color flows to get the matrix element
        return real(8. * amp * conj(amp));
      }

      // wave function,
      // ixx true takes anti-particle, false takes particle
      void ixx(std::vector<double> p, int nhel, std::complex<double> fi[6], bool isixx) {
        std::complex<double> chi[2];
        double sqp0p3;
        fi[0] = std::complex<double> (p[0], p[3]);
        fi[1] = std::complex<double> (p[1], p[2]);
        if (p[1] == 0.0 and p[2] == 0.0 and p[3] < 0.0) sqp0p3 = 0.0;
        else sqp0p3 = pow(max(p[0] + p[3], 0.0), 0.5);
        if (isixx) chi[0] = std::complex<double> (-sqp0p3, 0.0);
        else chi[0] = std::complex<double> (sqp0p3, 0.0);
        if (sqp0p3 == 0.0) chi[1] = std::complex<double> (-nhel * pow(2.0 * p[0], 0.5), 0.0);
        else chi[1] = std::complex<double> (nhel * p[1], -p[2])/sqp0p3;
        if (isixx) {
          if (nhel == 1) {
            fi[2] = chi[1];
            fi[3] = chi[0];
            fi[4] = std::complex<double> (0.0, 0.0);
            fi[5] = std::complex<double> (0.0, 0.0);
          } else {
            fi[2] = std::complex<double> (0.0, 0.0);
            fi[3] = std::complex<double> (0.0, 0.0);
            fi[4] = chi[0];
            fi[5] = chi[1];
          }
        } else {
          if(nhel == 1){
            fi[2] = chi[0];
            fi[3] = chi[1];
            fi[4] = std::complex<double> (0.00, 0.00);
            fi[5] = std::complex<double> (0.00, 0.00);
          } else {
            fi[2] = std::complex<double> (0.00, 0.00);
            fi[3] = std::complex<double> (0.00, 0.00);
            fi[4] = chi[1];
            fi[5] = chi[0];
          }
        }
        return;
      }

      // vertices
      void VVS2_3(std::complex<double> V1[], std::complex<double> V2[],
                  std::complex<double> COUP,
                  double M3, double W3, std::complex<double> S3[]) {
        std::complex<double> cI = std::complex<double> (0., 1.);
        std::complex<double> TMP1;
        double P3[4];
        std::complex<double> denom;
        S3[0] = +V1[0] + V2[0];
        S3[1] = +V1[1] + V2[1];
        P3[0] = -S3[0].real();
        P3[1] = -S3[1].real();
        P3[2] = -S3[1].imag();
        P3[3] = -S3[0].imag();
        TMP1 = (V2[2] * V1[2] - V2[3] * V1[3] - V2[4] * V1[4] - V2[5] * V1[5]);
        denom = COUP/(pow(P3[0], 2) - pow(P3[1], 2) - pow(P3[2], 2) - pow(P3[3], 2) -
                      M3 * (M3 - cI * W3));
        S3[2] = denom * cI * TMP1;
      }

      void FFV2_4_3(std::complex<double> F1[], std::complex<double> F2[],
                    std::complex<double> COUP1, std::complex<double> COUP2,
                    double M3, double W3, std::complex<double> V3[]) {

        std::complex<double> cI = std::complex<double> (0., 1.);
        std::complex<double> denom;
        std::complex<double> TMP11;
        double P3[4];
        std::complex<double> TMP14;
        double OM3 = 1./pow(M3, 2);
        V3[0] = +F1[0] + F2[0];
        V3[1] = +F1[1] + F2[1];
        P3[0] = -V3[0].real();
        P3[1] = -V3[1].real();
        P3[2] = -V3[1].imag();
        P3[3] = -V3[0].imag();
        TMP14 = (F1[4] * (F2[2] * (P3[0] - P3[3]) - F2[3] * (P3[1] + cI * (P3[2]))) +
                 F1[5] * (F2[2] * (+cI * (P3[2]) - P3[1]) + F2[3] * (P3[0] + P3[3])));
        TMP11 = (F1[2] * (F2[4] * (P3[0] + P3[3]) + F2[5] * (P3[1] + cI * (P3[2]))) +
                 F1[3] * (F2[4] * (P3[1] - cI * (P3[2])) + F2[5] * (P3[0] - P3[3])));
        denom = 1. / (pow(P3[0], 2) - pow(P3[1], 2) - pow(P3[2], 2) - pow(P3[3], 2) -
                      M3 * (M3 - cI * W3));
        V3[2] = COUP2 * denom * - 2. * cI * (OM3 * - 1./2. * P3[0] * (TMP11 + 2. * (TMP14)) +
                                             (+1./2. * (F2[4] * F1[2] + F2[5] * F1[3]) + F2[2] * F1[4] + F2[3] * F1[5]));
        V3[3] = COUP2 * denom * - 2. * cI * (OM3 * - 1./2. * P3[1] * (TMP11 + 2. * (TMP14)) +
                                             (-1./2. * (F2[5] * F1[2] + F2[4] * F1[3]) + F2[3] * F1[4] + F2[2] * F1[5]));
        V3[4] = COUP2 * denom * 2. * cI * (OM3 * 1./2. * P3[2] * (TMP11 + 2. * (TMP14)) +
                                           (+1./2. * cI * (F2[5] * F1[2]) - 1./2. * cI * (F2[4] * F1[3]) - cI *
                                            (F2[3] * F1[4]) + cI * (F2[2] * F1[5])));
        V3[5] = COUP2 * denom * 2. * cI * (OM3 * 1./2. * P3[3] * (TMP11 + 2. * (TMP14)) +
                                           (+1./2. * (F2[4] * F1[2]) - 1./2. * (F2[5] * F1[3]) - F2[2] * F1[4] + F2[3] * F1[5]));
        V3[2] += COUP1 * denom * - cI * (F2[4] * F1[2] + F2[5] * F1[3] - P3[0] * OM3 * TMP11);
        V3[3] += COUP1 * denom * - cI * (-F2[5] * F1[2] - F2[4] * F1[3] - P3[1] * OM3 * TMP11);
        V3[4] += COUP1 * denom * - cI * (-cI * (F2[5] * F1[2]) + cI * (F2[4] * F1[3]) - P3[2] * OM3 * TMP11);
        V3[5] += COUP1 * denom * - cI * (F2[5] * F1[3] - F2[4] * F1[2] - P3[3] * OM3 * TMP11);
      }

      std::complex<double> VVS3_0(double mass,
                                  std::complex<double> S3[],
                                  std::complex<double> COUP) {
        std::complex<double> TMP15;
        TMP15 = std::complex<double> (0., pow(mass, 2) / 2.);
        return COUP * S3[2] * (TMP15);
      }

      static const int nwavefuncs = 9;
      std::complex<double> w[nwavefuncs][18];

      // Pointer to the model parameters
      Parameters_heft pars;

      // vector with momenta (to be changed each event)
      std::vector < std::vector<double> > pout;
    };

    CPPProcess_P0_Sigma_heft_pp_H_ZZ_4l_heft_gg_epemmupmum MGME;

  };



  RIVET_DECLARE_PLUGIN(ATLAS_2020_I1790439);

}