1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/IdentifiedFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/DressedLeptons.hh"
namespace Rivet {
/// Colinear Z + Jets in pp at 13 TeV
class ATLAS_2022_I2077570 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2022_I2077570);
/// Book histograms and initialise projections before the run
void init() {
// Get options
_mode = 0;
if ( getOption("LMODE") == "ELEL") _mode = 1;
if ( getOption("LMODE") == "MUMU") _mode = 2;
// AntiKt4TruthWZJets prescription
// Photons
FinalState all_photons(Cuts::abspid == PID::PHOTON);
// Muons
PromptFinalState bare_mu(Cuts::abspid == PID::MUON, true); // true = use muons from prompt tau decays
DressedLeptons all_dressed_mu(all_photons, bare_mu, 0.1, Cuts::abseta < 2.5, true);
// Electrons
PromptFinalState bare_el(Cuts::abspid == PID::ELECTRON, true); // true = use electrons from prompt tau decays
DressedLeptons all_dressed_el(all_photons, bare_el, 0.1, Cuts::abseta < 2.5, true);
//Jet forming
VetoedFinalState vfs(FinalState(Cuts::abseta < 4.5));
vfs.addVetoOnThisFinalState(all_dressed_el);
vfs.addVetoOnThisFinalState(all_dressed_mu);
FastJets jet(vfs, FastJets::ANTIKT, 0.4, JetAlg::Muons::ALL, JetAlg::Invisibles::NONE);
declare(jet, "Jets");
// Current definition of leptons + jets
PromptFinalState photons(Cuts::abspid == PID::PHOTON);
PromptFinalState electrons(Cuts::abspid == PID::ELECTRON);
PromptFinalState muons(Cuts::abspid == PID::MUON);
// Kinematic cuts for leptons
const Cut cuts_lep = Cuts::pT > 25*GeV && Cuts::abseta < 2.5;
DressedLeptons dressed_electrons(photons, electrons, 0.1, cuts_lep);
declare(dressed_electrons, "DressedElectrons");
DressedLeptons dressed_muons(photons, muons, 0.1, cuts_lep);
declare(dressed_muons, "DressedMuons");
book(_h["ZpT"], 1, 1, 1);
book(_h["jetpT"], 2, 1, 1);
book(_h["NJets"], 3, 1, 1);
book(_h["NJets500"], 4, 1, 1);
book(_h["minDR"], 5, 1, 1);
book(_h["rZJ"], 6, 1, 1);
book(_h["rZJ_coll"], 7, 1, 1);
book(_h["rZJ_b2b"], 8, 1, 1);
book(_h["NJets_coll"], 9, 1, 1);
book(_h["NJets_b2b"], 10, 1, 1);
book(_h["HT"], 11, 1, 1);
book(_h["minDR600"], 12, 1, 1);
book(_h["NJets600"], 13, 1, 1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// access fiducial electrons and muons
const Particle *l1 = nullptr, *l2 = nullptr;
auto muons = apply<DressedLeptons>(event, "DressedMuons").dressedLeptons();
auto elecs = apply<DressedLeptons>(event, "DressedElectrons").dressedLeptons();
// lepton-jet overlap removal (note: muons are not included in jet finding)
// Jets eta < 2.5, pT > 30GeV for overlap removal
Jets jets = apply<FastJets>(event, "Jets").jetsByPt(Cuts::pT > 30*GeV && Cuts::absrap < 2.5);
// Remove all jets within dR < 0.2 of a dressed lepton
idiscardIfAnyDeltaRLess(jets, muons, 0.2);
idiscardIfAnyDeltaRLess(jets, elecs, 0.2);
// Remove leptons within dR < 0.4 of a jet
idiscardIfAnyDeltaRLess(muons, jets, 0.4);
idiscardIfAnyDeltaRLess(elecs, jets, 0.4);
int nElecs = elecs.size();
int nMuons = muons.size();
if (nElecs + nMuons != 2) vetoEvent; // dilepton cut
if (_mode == 2 && nMuons !=2) vetoEvent;
if (_mode == 1 && nElecs !=2) vetoEvent;
if (elecs.size()==2){
l1=&elecs[0];
l2=&elecs[1];
}
else if (muons.size()==2){
l1=&muons[0];
l2=&muons[1];
}
else vetoEvent;
// if not e+e- or mu+mu- pair, veto
if (l1->pid() + l2->pid() !=0) vetoEvent;
// Dilepton selection :: Z mass peak.
FourMomentum ll = (l1->mom() + l2->mom());
double Zm = ll.mass();
if ( !inRange(Zm/GeV, 71.0, 111.0) ) vetoEvent;
double ZpT = ll.pT();
// Calculate the observables
double jet0pT = 0.;
double cljetpT = 0.;
double minDR = 99.;
// Require jets to be above 100GeV
ifilter_select(jets, Cuts::pT > 100*GeV);
double HTjet = sum(jets, Kin::pT, 0.);
for (const Jet& j : jets) {
// find minDR and closest jet to Z boson, only with 100GeV+ jets
double dr = deltaR(j, ll ,RAPIDITY);
if (dr < minDR) {
minDR = dr;
cljetpT = j.pT();
}
}
const size_t Njets = jets.size();
// NJets >= 1
if (Njets < 1) vetoEvent;
// Exclusive NJets, jet pT > 100 GeV
_h["NJets"]->fill(Njets);
// Z pT
_h["ZpT"]->fill(ZpT/GeV);
//Leading jet pT
jet0pT = jets[0].pT();
_h["jetpT"]->fill(jet0pT/GeV);
// HT
double HT = HTjet + l1->pT() + l2->pT();
_h["HT"]->fill(HT/GeV);
// HTJet > 600 GeV selection
if (HTjet >= 600.) {
double minDR_HTjet = 99.;
// closest jet to Z
for (const Jet& j : jets) {
const double dr = deltaR(j, ll, RAPIDITY);
if (dr < minDR_HTjet) minDR_HTjet = dr;
}
// Fill histograms of HTjet > 600 GeV
_h["NJets600"]->fill(Njets);
_h["minDR600"]->fill(minDR_HTjet);
} // end of HTjet > 600 GeV
// Our high pT phase-space
if (jet0pT/GeV < 500.0) vetoEvent;
// Exclusive NJets, jet pT > 500 GeV
_h["NJets500"]->fill(Njets);
// Z/J pT ratio
_h["rZJ"]->fill(ZpT/cljetpT);
_h["minDR"]->fill(minDR);
// Phase space with DR<1.4
if (minDR < 1.4) {
_h["NJets_coll"]->fill(Njets);
_h["rZJ_coll"]->fill(ZpT/cljetpT);
// Phase space with DR>2.0
} else if (minDR >2.0) {
_h["NJets_b2b"]->fill(Njets);
_h["rZJ_b2b"]->fill(ZpT/cljetpT);
}
}
void finalize() {
double xsec = crossSectionPerEvent()/picobarn;
// Analysis measures Z->ll(ee or mumu)
// If file contains both Z->ee and Z->mumu, divide xs by 2
if (_mode == 0) xsec *= 0.5;
// Normalize to cross section.
scale(_h, xsec);
} // end of finalize
//@}
// define histograms
size_t _mode;
map<string, Histo1DPtr> _h;
};
RIVET_DECLARE_PLUGIN(ATLAS_2022_I2077570);
}
|