Rivet Analyses Reference

BABAR_2015_I1377201

Azimuthal asymmetries in inclusive $\pi\pi$ $KK$ and $K\pi$ pairs at 10.58 GeV
Experiment: BABAR (PEP-II)
Inspire ID: 1377201
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev. D92 (2015) no.11, 111101
Beams: e+ e-
Beam energies: (5.3, 5.3) GeV
Run details:
  • e+e- to hadrons

Measurement of azimuthal asymmetries in inclusive $\pi\pi$ $KK$ and $K\pi$ pair production at $\sqrt{s}=10.58$ GeV by the BABAR experiment

Source code: BABAR_2015_I1377201.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/Beam.hh"

namespace Rivet {


  /// @brief azimuthal asymmetries in pipi Kpi and KK
  class BABAR_2015_I1377201 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BABAR_2015_I1377201);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {
      // projections
      const FinalState fs;
      declare(fs,"FS");
      declare(Thrust(fs),"Thrust");
      declare(Beam(), "Beams");
      // declare the histos for the distributions
      string type  [3] = {"KK","Kpi","pipi"};
      string charge[3] = {"Like","Opposite","All"};
      unsigned int nbin=20;
      for(unsigned int itype=0;itype<3;++itype) {
	for(unsigned int icharge=0;icharge<3;++icharge) {
	  for(unsigned int ibin=0;ibin<16;++ibin) {
	    std::ostringstream title1;
	    title1 << "/TMP/h_thrust" << type[itype] << "_" << charge[icharge] << "_" << ibin+1;
	    book(_h_thrust[itype][icharge][ibin],title1.str(),nbin,0.,M_PI);
	    std::ostringstream title2;
	    title2 << "/TMP/h_hadron" << type[itype] << "_" << charge[icharge] << "_" << ibin+1;
	    book(_h_hadron[itype][icharge][ibin],title2.str(),nbin,0.,M_PI);
	  }
	}
      }
    }

    unsigned int iBin(double z) {
      if     (z<.2) return 0;
      else if(z<.3) return 1;
      else if(z<.5) return 2;
      else          return 3;
    }
    
    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // get the axis, direction of incoming electron
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      Vector3 axis1;
      if(beams.first.pid()>0)
	axis1 = beams.first .momentum().p3().unit();
      else
	axis1 = beams.second.momentum().p3().unit();
      // apply thrust cuts  T > 0.8  and | cos θ th | < 0.6
      Thrust thrust = apply<Thrust>(event,"Thrust");
      if(thrust.thrust()<=0.8) vetoEvent;
      if(cos(thrust.thrustAxis().polarAngle())>=0.6) vetoEvent;
      // construct x,y,z axes for thrust defn
      ThreeVector t_z = thrust.thrustAxis();
      ThreeVector t_x = (axis1-t_z.dot(axis1)*t_z).unit();
      ThreeVector t_y = t_z.cross(t_x);
      // loop over the particles
      Particles charged = apply<FinalState>(event,"FS").particles(Cuts::abspid==PID::PIPLUS || Cuts::abspid==PID::KPLUS);
      for(unsigned int ix=0;ix<charged.size();++ix) {
	// z and angle cut
	const double x1=2.*charged[ix].momentum().t()/sqrtS();
	if(x1<0.16||x1>.9) continue;
	if(abs(t_z.angle(charged[ix].momentum().p3()))>0.25*M_PI) continue;
	double dot1 = t_z.dot(charged[ix].p3());
	for(unsigned int iy=ix+1;iy<charged.size();++iy) {
	  const double x2=2.*charged[iy].momentum().t()/sqrtS();
	  // z and angle cut
	  if(x2<0.16||x2>.9) continue;
	  if(abs(t_z.angle(charged[ix].momentum().p3()))>0.25*M_PI) continue;
	  // different hemi
	  double dot2 = t_z.dot(charged[iy].p3());
	  if(dot1*dot2>0.) continue;
	  Particle p1=charged[ix], p2=charged[iy];
	  double z1(x1),z2(x2);
	  // randomly order the particles
	  if(rand()/static_cast<double>(RAND_MAX) < 0.5 ) {
	    swap(p1,p2);
	    swap(z1,z2);
	  }
	  // thrust def
	  double phi12 = atan2(p1.p3().dot(t_y),p1.p3().dot(t_x))+atan2(p2.p3().dot(t_y),p2.p3().dot(t_x));
	  if(phi12>M_PI)  phi12 -= 2*M_PI;
	  if(phi12<-M_PI) phi12 += 2*M_PI;
	  if(phi12<0.) phi12 = -phi12;
	  // hadron defn
	  ThreeVector h_z = p2.p3().unit();
	  ThreeVector h_x = (axis1-h_z.dot(axis1)*h_z).unit();
	  ThreeVector pt1 = p1.p3()-h_z.dot(p1.p3())*h_z;
	  double phi0 = pt1.angle(h_x);
	  if(phi0>M_PI)  phi0 -= 2*M_PI;
	  if(phi0<-M_PI) phi0 += 2*M_PI;
	  int ibin = 4*iBin(z1)+iBin(z2);
	  // pi pi
	  if(p1.abspid()==PID::PIPLUS && p2.abspid()==PID::PIPLUS) {
	    if(p1.pid()==p2.pid()) {
	      _h_thrust[2][0][ibin]->fill(phi12);
	      _h_hadron[2][0][ibin]->fill(phi0);
	    }
	    else {
	      _h_thrust[2][1][ibin]->fill(phi12);
	      _h_hadron[2][1][ibin]->fill(phi0);
	    }
	    _h_thrust[2][2][ibin]->fill(phi12);
	    _h_hadron[2][2][ibin]->fill(phi0);
	  }
	  // K K
	  else if(p1.abspid()==PID::KPLUS && p2.abspid()==PID::KPLUS) {
	    if(p1.pid()==p2.pid()) {
	      _h_thrust[0][0][ibin]->fill(phi12);
	      _h_hadron[0][0][ibin]->fill(phi0);
	    }
	    else {
	      _h_thrust[0][1][ibin]->fill(phi12);
	      _h_hadron[0][1][ibin]->fill(phi0);
	    }
	    _h_thrust[0][2][ibin]->fill(phi12);
	    _h_hadron[0][2][ibin]->fill(phi0);
	  }
	  // K pi
	  else {
	    if(p1.pid()*p2.pid()>0) {
	      _h_thrust[1][0][ibin]->fill(phi12);
	      _h_hadron[1][0][ibin]->fill(phi0);
	    }
	    else {
	      _h_thrust[1][1][ibin]->fill(phi12);
	      _h_hadron[1][1][ibin]->fill(phi0);
	    }
	    _h_thrust[1][2][ibin]->fill(phi12);
	    _h_hadron[1][2][ibin]->fill(phi0);
	  }

	  
	}
      }
    }
    
    pair<double,double> calcAsymmetry(Scatter2DPtr hist,double fact=1.) {
      double sum1(0.),sum2(0.);
      for (auto point : hist->points() ) {
	double Oi = point.y();
	if(Oi==0. || std::isnan(Oi) ) continue;
	double ai = 1.;
	double bi = (sin(fact*point.xMax())-sin(fact*point.xMin()))/(point.xMax()-point.xMin())/fact;
	double Ei = point.yErrAvg();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      if(sum1==0.) return make_pair(0.,0.);
      return make_pair(sum2/sum1*1e4,sqrt(1./sum1)*1e4);
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int itype=0;itype<3;++itype) {
	for(unsigned int icharge=0;icharge<3;++icharge) {
	  for(unsigned int ibin=0;ibin<16;++ibin) {
	    normalize(_h_thrust[itype][icharge][ibin]);
	    normalize(_h_hadron[itype][icharge][ibin]);
	  }
	}
      }
      // construct ther ratios
      // declare the histos for the distributions
      string type  [3] = {"pipi","Kpi","KK"};
      string charge[3] = {"Like","Opposite","All"};
      for(unsigned int itype=0;itype<3;++itype) {
	Scatter3DPtr h3_thrust_UL;
	book(h3_thrust_UL,2*itype+1,1,2,0);
	Scatter3DPtr h3_thrust_UC;
	book(h3_thrust_UC,2*itype+1,1,3,0);
	Scatter3DPtr h3_hadron_UL;
	book(h3_hadron_UL,2*itype+2,1,2,0);
	Scatter3DPtr h3_hadron_UC;
	book(h3_hadron_UC,2*itype+2,1,3,0);
	
	unsigned int ihist=1;
	Scatter2DPtr h2_thrust_UL;
	book(h2_thrust_UL,7+2*itype,ihist,2);
	Scatter2DPtr h2_thrust_UC;
	book(h2_thrust_UC,7+2*itype,ihist,3);
	Scatter2DPtr h2_hadron_UL;
	book(h2_hadron_UL,8+2*itype,ihist,2);
	Scatter2DPtr h2_hadron_UC;
	book(h2_hadron_UC,8+2*itype,ihist,3);
	
	Scatter3D temphisto1(refData<Scatter3D>(2*itype+1, 1, 2));
	Scatter3D temphisto2(refData<Scatter3D>(2*itype+2, 1, 2));
	for(unsigned int ibin=0;ibin<16;++ibin) {
	  const Point3D & p1 = temphisto1.points()[ibin];
	  const Point3D & p2 = temphisto2.points()[ibin];
	  if(ibin>0 && ibin%4==0) {
	    ++ihist;
	    book(h2_thrust_UL,7+2*itype,ihist,2);
	    book(h2_thrust_UC,7+2*itype,ihist,3);
	    book(h2_hadron_UL,8+2*itype,ihist,2);
	    book(h2_hadron_UC,8+2*itype,ihist,3);
	  }
	  // thrust direction
	  // opposite/like sign
	  std::ostringstream title1;
	  title1 << "/TMP/R_thrust_" << type[itype] << "_UL_" << ibin+1;
	  Scatter2DPtr htemp;
	  book(htemp,title1.str());
	  divide(_h_thrust[itype][1][ibin],
		 _h_thrust[itype][0][ibin],htemp);
	  pair<double,double> asym = calcAsymmetry(htemp);
	  h3_thrust_UL->addPoint(p1.x()    ,p1.y()    ,asym.first,
				 p1.xErrs(),p1.yErrs(),make_pair(asym.second,asym.second) );
	  h2_thrust_UL->addPoint(p1.y()    ,asym.first,p1.yErrs(),make_pair(asym.second,asym.second) );
	  // opposite/all sign
	  std::ostringstream title2;
	  title2 << "/TMP/R_thrust_" << type[itype] << "_UC_" << ibin+1;
	  book(htemp,title2.str());
	  divide(_h_thrust[itype][1][ibin],
		 _h_thrust[itype][2][ibin],htemp);
	  asym = calcAsymmetry(htemp);
	  h3_thrust_UC->addPoint(p1.x()    ,p1.y()    ,asym.first,
				 p1.xErrs(),p1.yErrs(),make_pair(asym.second,asym.second) );
	  h2_thrust_UC->addPoint(p1.y()    ,asym.first,p1.yErrs(),make_pair(asym.second,asym.second) );
	  // hadron dirn
	  // opposite/like sign
	  std::ostringstream title3;
	  title3 << "/TMP/R_hadron_" << type[itype] << "_UL_" << ibin+1;
	  book(htemp,title3.str());
	  divide(_h_hadron[itype][1][ibin],
		 _h_hadron[itype][0][ibin],htemp);
	  asym = calcAsymmetry(htemp,2.);
	  h3_hadron_UL->addPoint(p2.x()    ,p2.y()    ,asym.first,
				 p2.xErrs(),p2.yErrs(),make_pair(asym.second,asym.second) );
	  h2_hadron_UL->addPoint(p2.y()    ,asym.first,p2.yErrs(),make_pair(asym.second,asym.second) );
	  // opposite/all sign
	  std::ostringstream title4;
	  title4 << "/TMP/R_hadron_" << type[itype] << "_UC_" << ibin+1;
	  book(htemp,title4.str());
	  divide(_h_hadron[itype][1][ibin],
		 _h_hadron[itype][2][ibin],htemp);
	  asym = calcAsymmetry(htemp,2.);
	  h3_hadron_UC->addPoint(p2.x()    ,p2.y()    ,asym.first,
				 p2.xErrs(),p2.yErrs(),make_pair(asym.second,asym.second) );
	  h2_hadron_UC->addPoint(p2.y()    ,asym.first,p2.yErrs(),make_pair(asym.second,asym.second) );
	}
      }
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_thrust[3][3][16],_h_hadron[3][3][16];
    //@}


  };


  RIVET_DECLARE_PLUGIN(BABAR_2015_I1377201);

}