Rivet Analyses Reference

BABAR_2018_I1691222

$e^+e^-\to e^+e^-\eta^\prime$ via intermediate photons at 10.58 GeV
Experiment: BABAR (PEP-II)
Inspire ID: 1691222
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 98 (2018) 11, 112002
Beams: e+ e-
Beam energies: (5.3, 5.3) GeV
Run details:
  • e+ e- > e+e- meson via photon photon -> meson

Measurement of the cross section for the production of $\eta^\prime$ in photon-photon collisions, i.e. $e^+e^-\to \gamma\gamma e^+e^-$ followed by $\gamma\gamma\to\eta^\prime$, by the Babar experiment at 10.58 GeV. This measurement is doubly differential in the virtuality of the two photons.

Source code: BABAR_2018_I1691222.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/Beam.hh"

namespace Rivet {


  /// @brief e+e- > e+e- eta'
  class BABAR_2018_I1691222 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BABAR_2018_I1691222);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      declare(Beam(), "Beams");
      declare(FinalState(),"FS");
      declare(UnstableParticles(), "UFS");
      // book the histograms
      book(_h_etap,1,1,1);
    }

    void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
      for (const Particle &child : p.children()) {
        if (child.children().empty()) {
          --nRes[child.pid()];
          --ncount;
        } else {
          findChildren(child,nRes,ncount);
        }
      }
    }

    bool findScattered(Particle beam, double& q2) {
      bool found = false;
      Particle scat = beam;
      while (!scat.children().empty()) {
        found = false;
        for (const Particle & p : scat.children()) {
          if (p.pid()==scat.pid()) {
            scat=p;
            found=true;
            break;
          }
        }
        if (!found) break;
      }
      if (!found) return false;
      q2 = -(beam.momentum() - scat.momentum()).mass2();
      return true;
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // find scattered leptons and calc Q2
      const Beam& beams = apply<Beam>(event, "Beams");
      double q12 = -1, q22 = -1;
      if (!findScattered(beams.beams().first,  q12)) vetoEvent;
      if (!findScattered(beams.beams().second, q22)) vetoEvent;
      if(q22>q12) swap(q12,q22);
      // check the final state
      const FinalState & fs = apply<FinalState>(event, "FS");
      map<long,int> nCount;
      int ntotal(0);
      for (const Particle& p : fs.particles()) {
        nCount[p.pid()] += 1;
        ++ntotal;
      }
      // find the meson
      const FinalState& ufs = apply<FinalState>(event, "UFS");
      for (const Particle& p : ufs.particles(Cuts::pid==331)) {
        if(p.children().empty()) continue;
        map<long,int> nRes = nCount;
        int ncount = ntotal;
        findChildren(p,nRes,ncount);
        bool matched = true;
        for(auto const & val : nRes) {
          if(abs(val.first)==11) {
            if(val.second!=1) {
              matched = false;
              break;
            }
          }
          else if(val.second!=0) {
            matched = false;
            break;
          }
        }
        if (matched) {
	  // 2<Q2<10 for both photons bin
	  if(q12>2.&&q12<10.&&q22>2.&&q22<10.) {
	    _h_etap->fill(0,1./sqr(8.));
	  }
	  // 10<Q2<30 for both photons bin
	  else if(q12>10&&q12<30.&&q22>10.&&q22<30.)
	    _h_etap->fill(1,1./sqr(20.));
	  // 10<Q12<30 2<Q22<10
	  else if(q22>2.&&q22<10.&&q12>10.&&q12<30.)
	    _h_etap->fill(2,1./8./20./2.);
	  // 2<Q22<30 30<Q12<60
	  else if(q22>2.&&q22<30.&&q12>30.&&q12<60.)
	    _h_etap->fill(3,1./28./30./2.);
	  // 30<Q2<60 for both photons
	  else if(q22>30.&&q22<60.&&q12>30.&&q12<60.)
	    _h_etap->fill(4,1./sqr(30.));
        }
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      scale(_h_etap, 1e4*crossSection()/femtobarn/sumW());
    }

    ///@}


    /// @name Histograms
    ///@{
    Histo1DPtr _h_etap;
    unsigned int _ncount=0;
    ///@}


  };


  RIVET_DECLARE_PLUGIN(BABAR_2018_I1691222);

}