1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
namespace Rivet {
/// @brief gamma gamma -> pi+pi-/K+ K-
class BELLE_2005_I667712 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2005_I667712);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Final state
declare(FinalState(),"FS");
// check CMS energy in range
if(sqrtS()<2.4*GeV || sqrtS()>4.1*GeV)
throw Error("Invalid CMS energy for BELLE_2005_I667712");
for(unsigned int ix=0;ix<7;++ix) {
std::ostringstream title;
title << "/TMP/nPi_" << ix;
book(_cPi[ix], title.str());
}
for(unsigned int ix=0;ix<7;++ix) {
std::ostringstream title;
title << "/TMP/nK_" << ix;
book(_cK[ix], title.str());
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
Particles part = applyProjection<FinalState>(event,"FS").particles();
if(part.size()!=2) vetoEvent;
if(part[0].pid()!=-part[1].pid()) vetoEvent;
double cTheta(0.);
bool foundPi(false),foundK(false);
for(const Particle & p : part) {
if(p.pid()==PID::PIPLUS) {
foundPi=true;
cTheta = abs(p.momentum().z()/p.momentum().p3().mod());
}
else if(p.pid()==PID::KPLUS) {
foundK=true;
cTheta = abs(p.momentum().z()/p.momentum().p3().mod());
}
}
if(!foundPi && !foundK) vetoEvent;
int ibin = cTheta/0.1;
if(ibin>5) vetoEvent;
if(foundPi) {
_cPi[ 0 ]->fill();
_cPi[ibin+1]->fill();
}
else if(foundK) {
_cK[ 0 ]->fill();
_cK[ibin+1]->fill();
}
}
/// Normalise histograms etc., after the run
void finalize() {
double fact = crossSection()/nanobarn/sumOfWeights();
for(unsigned int ip=0;ip<2;++ip) {
CounterPtr denom = ip==0 ? _cPi[0] : _cK[0];
if(denom->numEntries()==0) continue;
for(unsigned int ih=0;ih<7;++ih) {
CounterPtr numer = ip==0 ? _cPi[ih] : _cK[ih];
double sigma = numer->val()*fact;
double error = numer->err()*fact;
// bin width for 2d dist
if(ih!=0) {
sigma /=0.1;
error /=0.1;
}
unsigned int ix=5+ip, iy=ih;
if(ih==0) {
ix=1;
iy = ip==0 ? 2 : 1;
}
// ratio
std::ostringstream title;
title << "/TMP/n_" << ip << "_" << ih;
Scatter1D sTemp(title.str());
Scatter1DPtr s1d = registerAO(sTemp);
// hist for axis
Scatter2D temphisto(refData(ix, 1, iy));
Scatter2DPtr cross,ratio;
book(cross, ix, 1, iy);
if(ih!=0) {
book(ratio,ix-2,1,iy);
divide(numer,denom,s1d);
}
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS(), x-ex2.first, x+ex2.second)) {
cross->addPoint(x, sigma, ex, make_pair(error,error));
if(ih!=0) {
ratio->addPoint(x,s1d->points()[0].x()/0.1,ex,make_pair(s1d->points()[0].xErrs().first /0.1,
s1d->points()[0].xErrs().second/0.1));
}
}
else {
cross->addPoint(x, 0., ex, make_pair(0.,.0));
if(ih!=0)
ratio->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
}
// }
}
///@}
/// @name Histograms
///@{
CounterPtr _cPi[7],_cK[7];
///@}
};
RIVET_DECLARE_PLUGIN(BELLE_2005_I667712);
}
|