1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/FinalState.hh"
namespace Rivet {
/// @brief Add a short analysis description here
class BELLE_2015_I1336624 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2015_I1336624);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(FinalState(), "FS");
declare(UnstableParticles(), "UFS");
// Book histograms
book(_c_hadrons, "/TMP/sigma_hadrons");
book(_c_1S , "/TMP/1S");
book(_c_2S , "/TMP/2S");
book(_c_3S , "/TMP/3S");
book(_c_muons, "/TMP/sigma_muons");
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for (const Particle &child : p.children()) {
if(child.children().empty()) {
--nRes[child.pid()];
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// analyse the final state
const FinalState& fs = apply<FinalState>(event, "FS");
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// intermediates
bool isBottom(false);
const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
for (const Particle& p : ufs.particles()) {
// check for bottom hadrons
if (PID::isBottomHadron(p.pid())) {
isBottom = true;
break;
}
// upsilon + pi+pi-
if(p.children().empty()) continue;
if(p.pid() != 553 &&
p.pid() != 100553 &&
p.pid() != 200553 ) continue;
map<long,int> nRes = nCount;
int ncount = ntotal;
findChildren(p,nRes,ncount);
if(ncount!=2) continue;
bool matched = true;
for(auto const & val : nRes) {
if(abs(val.first)==211) {
continue;
}
else if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
if(nRes[211]==1 && nRes[-211]==1 ) {
if(p.pid()==553)
_c_1S->fill();
if(p.pid()==100553)
_c_2S->fill();
if(p.pid()==200553)
_c_3S->fill();
}
}
}
// mu+mu- + photons
if(nCount[-13]==1 and nCount[13]==1 &&
ntotal==2+nCount[22])
_c_muons->fill();
// open bottom
else if(isBottom) {
_c_hadrons->fill();
}
}
/// Normalise histograms etc., after the run
void finalize() {
// loop over histos to be filled
for(unsigned int ix=1;ix<3;++ix) {
Scatter1D R;
for(unsigned int iy=1;iy<4;++iy) {
if(ix==2 && iy!=1) continue;
if(ix==1) {
if(iy==1) {
R = *_c_1S/ *_c_muons;
}
else if(iy==2) {
R = *_c_2S/ *_c_muons;
}
else {
R = *_c_3S/ *_c_muons;
}
}
else if(ix==2) {
R = *_c_hadrons/ *_c_muons;
}
double rval = R.point(0).x();
pair<double,double> rerr = R.point(0).xErrs();
Scatter2D temphisto(refData(ix, 1, iy));
Scatter2DPtr mult;
book(mult, ix, 1, iy);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/MeV, x-ex2.first, x+ex2.second)) {
mult ->addPoint(x, rval, ex, rerr);
}
else {
mult ->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
}
}
//@}
/// @name Histograms
//@{
CounterPtr _c_hadrons, _c_muons, _c_1S, _c_2S, _c_3S;
//@}
};
RIVET_DECLARE_PLUGIN(BELLE_2015_I1336624);
}
|