1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Add a short analysis description here
class BELLE_2017_I1512299 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2017_I1512299);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS");
// Book histograms
book(_h_w , 1, 1, 1);
book(_h_costhv, 2, 1, 1);
book(_h_costhl, 3, 1, 1);
book(_h_chi , 4, 1, 1);
}
/// Perform the per-event analysis
bool analyzeDecay(Particle mother, vector<int> ids) {
// There is no point in looking for decays with less particles than to be analysed
if (mother.children().size() == ids.size()) {
bool decayfound = true;
for (int id : ids) {
if (!contains(mother, id)) decayfound = false;
}
return decayfound;
}
return false;
}
bool contains(Particle& mother, int id) {
return any(mother.children(), HasPID(id));
}
double recoilW(const Particle& mother) {
FourMomentum lepton, neutrino, meson, q;
for(const Particle& c : mother.children()) {
if (c.isNeutrino()) neutrino=c.mom();
if (c.isLepton() &! c.isNeutrino()) lepton =c.mom();
if (c.isHadron()) meson=c.mom();
}
q = lepton + neutrino; //no hadron before
double mb2= mother.mom()*mother.mom();
double mD2 = meson*meson;
return (mb2 + mD2 - q*q )/ (2. * sqrt(mb2) * sqrt(mD2) );
}
/// Perform the per-event analysis
void analyze(const Event& event) {
FourMomentum pl, pnu, pB, pD, pDs, ppi;
// Iterate of B0bar mesons
for(const Particle& p : apply<UnstableParticles>(event, "UFS").particles(Cuts::pid==-511)) {
pB = p.momentum();
// Find semileptonic decays
if (analyzeDecay(p, {PID::DSTARPLUS,-12,11}) || analyzeDecay(p, {PID::DSTARPLUS,-14,13}) ) {
_h_w->fill(recoilW(p));
// Get the necessary momenta for the angles
bool foundDdecay=false;
for (const Particle & c : p.children()) {
if ( (c.pid() == PID::DSTARPLUS) && (analyzeDecay(c, {PID::PIPLUS, PID::D0}) || analyzeDecay(c, {PID::PI0, PID::DPLUS})) ) {
foundDdecay=true;
pDs = c.momentum();
for (const Particle & dc : c.children()) {
if (dc.hasCharm()) pD = dc.momentum();
else ppi = dc.momentum();
}
}
if (c.pid() == 11 || c.pid() == 13) pl = c.momentum();
if (c.pid() == -12 || c.pid() == -14) pnu = c.momentum();
}
// This is the angle analysis
if (foundDdecay) {
// First boost all relevant momenta into the B-rest frame
const LorentzTransform B_boost = LorentzTransform::mkFrameTransformFromBeta(pB.betaVec());
// Momenta in B rest frame:
FourMomentum lv_brest_Dstar = B_boost.transform(pDs);//lab2brest(gp_Dstar.particle.p());
FourMomentum lv_brest_w = B_boost.transform(pB - pDs); //lab2brest(p_lv_w);
FourMomentum lv_brest_D = B_boost.transform(pD); //lab2brest(gp_D.particle.p());
FourMomentum lv_brest_lep = B_boost.transform(pl); //lab2brest(gp_lep.p());
const LorentzTransform Ds_boost = LorentzTransform::mkFrameTransformFromBeta(pDs.betaVec());
FourMomentum lv_Dstarrest_D = Ds_boost.transform(lv_brest_D);
const LorentzTransform W_boost = LorentzTransform::mkFrameTransformFromBeta((pB-pDs).betaVec());
FourMomentum lv_wrest_lep = W_boost.transform(lv_brest_lep);
double cos_thetaV = cos(lv_brest_Dstar.p3().angle(lv_Dstarrest_D.p3()));
_h_costhv->fill(cos_thetaV);
double cos_thetaL = cos(lv_brest_w.p3().angle(lv_wrest_lep.p3()));
_h_costhl->fill(cos_thetaL);
Vector3 LTrans = lv_wrest_lep.p3() - cos_thetaL*lv_wrest_lep.p3().perp()*lv_brest_w.p3().unit();
Vector3 VTrans = lv_Dstarrest_D.p3() - cos_thetaV*lv_Dstarrest_D.p3().perp()*lv_brest_Dstar.p3().unit();
float chi = atan2(LTrans.cross(VTrans).dot(lv_brest_w.p3().unit()), LTrans.dot(VTrans));
if(chi < 0) chi += TWOPI;
_h_chi->fill(chi);
//const LorentzTransform W_boost = LorentzTransform::mkFrameTransformFromBeta((pl+pnu).betaVec());
//const LorentzTransform D_boost = LorentzTransform::mkFrameTransformFromBeta((pD+ppi).betaVec());
//FourMomentum pl_t = FourMomentum(W_boost.transform(pl));
//FourMomentum pD_t = FourMomentum(D_boost.transform(pD));
//double thetal = (pl+pnu).angle(pl_t);
//double thetav = (pD+ppi).angle(pD_t);
//_h_costhv->fill(cos(thetav));
//_h_costhl->fill(cos(thetal));
}
}
}
}
//else if (analyzeDecay(p, {413,-14,13}) ) {
//_h_w->fill(recoilW(p));
//}
/// Normalise histograms etc., after the run
void finalize() {
double GAMMA_B0 = 4.32e-13; // Total width in GeV, calculated from mean life time of 1.52 pico seconds
double BR_B0_DSPLUS_ELL_NU = 0.0495; // Branching fraction from the same paper for B0bar to D*+ ell nu
double NORM = GAMMA_B0 * BR_B0_DSPLUS_ELL_NU; // Normalise histos to partial width
normalize(_h_w, NORM);
normalize(_h_costhv, NORM);
normalize(_h_costhl, NORM);
normalize(_h_chi, NORM);
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_w;
Histo1DPtr _h_costhv;
Histo1DPtr _h_costhl;
Histo1DPtr _h_chi;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(BELLE_2017_I1512299);
}
|