Rivet Analyses Reference

BELLE_2021_I1851126

Decay asymmetries in $\Xi^0_c\to\Xi^-\pi^+$
Experiment: BELLE (KEKB)
Inspire ID: 1851126
Status: VALIDATED
Authors:
  • Peter Richardson
References:Beams: * *
Beam energies: ANY
Run details:
  • Any process producing Xi_c0

Measurement of the decay asymmetries in $\Xi^0_c\to\Xi^-\pi^+$ by the BELLE experiment. The asymmetry parameter is extracted by fitting to normalised angular distribution. This analysis is useful for testing spin correlations in hadron decays.

Source code: BELLE_2021_I1851126.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Xi_c0 -> Xi-pi+ asymmetry
  class BELLE_2021_I1851126 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2021_I1851126);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      declare(UnstableParticles(), "UFS" );
      // Book histograms
      book(_h_c_P,1,1,1);
      book(_h_c_M,1,1,2);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // loop over Xi_c0 baryons
      for( const Particle& Xic : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4132)) {
	int sign = Xic.pid()/4132;
	if(Xic.children().size()!=2) continue;
	Particle baryon1,meson1;
	if(Xic.children()[0].pid()==sign*3312 && 
	   Xic.children()[1].pid()==sign*211) {
	  baryon1 = Xic.children()[0];
	  meson1  = Xic.children()[1];
	}
	else if(Xic.children()[1].pid()==sign*3312 && 
		Xic.children()[0].pid()==sign*211) {
	  baryon1 = Xic.children()[1];
	  meson1  = Xic.children()[0];
	}
	else
	  continue;
	Particle baryon2,meson2;
	if(baryon1.children()[0].pid()== sign*3122 && 
	   baryon1.children()[1].pid()==-sign*211) {
	  baryon2 = baryon1.children()[0];
	  meson2  = baryon1.children()[1];
	}
	else if(baryon1.children()[1].pid()== sign*3122 && 
		baryon1.children()[0].pid()==-sign*211) {
	  baryon2 = baryon1.children()[1];
	  meson2  = baryon1.children()[0];
	}
	else
	  continue;
	// first boost to the Xic rest frame
	LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Xic.momentum().betaVec());
	FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
	FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
	// to lambda rest frame
	LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
	Vector3 axis = pbaryon1.p3().unit();
	FourMomentum pp = boost2.transform(pbaryon2);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	if(sign>0)
	  _h_c_P->fill(cTheta,1.);
	else
	  _h_c_M->fill(cTheta,1.);
      }
    }

    pair<double,double> calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai = 0.5*(bin.xMax()-bin.xMin());
	double bi = 0.5*ai*(bin.xMax()+bin.xMin());
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }
    
    /// Normalise histograms etc., after the run
    void finalize() {
      // first mode
      normalize(_h_c_P);
      Scatter2DPtr _h_alpha_P;
      book(_h_alpha_P,2,1,1);
      pair<double,double> alphaP = calcAlpha(_h_c_P);
      alphaP.first /= -0.401;
      alphaP.second/= -0.401;
      _h_alpha_P->addPoint(0.5, alphaP.first, make_pair(0.5,0.5), make_pair(alphaP.second,alphaP.second) );
      // second mode
      normalize(_h_c_M);
      Scatter2DPtr _h_alpha_M;
      book(_h_alpha_M,2,1,2);
      pair<double,double> alphaM = calcAlpha(_h_c_M);
      alphaM.first /= 0.389;
      alphaM.second/= 0.389;
      _h_alpha_M->addPoint(0.5, alphaM.first, make_pair(0.5,0.5), make_pair(alphaM.second,alphaM.second) );
      // average
      double aver = 0.5*(-alphaP.first+alphaM.first);
      double err  = 0.5*sqrt(sqr(alphaP.second)+sqr(alphaM.second));
      Scatter2DPtr _h_alpha_aver;
      book(_h_alpha_aver,2,1,3);
      _h_alpha_aver->addPoint(0.5, aver, make_pair(0.5,0.5), make_pair(err,err) );
      // asymetry
      double asym = (alphaP.first+alphaM.first)/(alphaP.first-alphaM.first);
      err         = 2./sqr(alphaP.first-alphaM.first)*sqrt(sqr(alphaM.first *alphaP.second)+
							   sqr(alphaM.second*alphaP.first ));
      Scatter2DPtr _h_alpha_asym;
      book(_h_alpha_asym,2,1,4);
      _h_alpha_asym->addPoint(0.5, asym, make_pair(0.5,0.5), make_pair(err,err) );
    }

    ///@}


    /// @name Histograms
    ///@{
    Histo1DPtr _h_c_M,_h_c_P;
    ///@}


  };


  RIVET_DECLARE_PLUGIN(BELLE_2021_I1851126);

}