1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief B(*) bar{B}(*) exclusive cross section
class BELLE_2021_I1859137 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BELLE_2021_I1859137);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(FinalState(), "FS");
declare(UnstableParticles(), "UFS");
// histograms
book(_nBB , "/TMP/nBB" );
book(_nBBS , "/TMP/nBBS" );
book(_nBSBS, "/TMP/nBSBS");
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for(const Particle &child : p.children()) {
if(child.children().empty()) {
nRes[child.pid()]-=1;
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const FinalState& fs = apply<FinalState>(event, "FS");
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// extract botton hadrons
Particles bHadrons=apply<FinalState>(event, "UFS").particles(Cuts::abspid==511 or Cuts::abspid==513 or
Cuts::abspid==521 or Cuts::abspid==523);
for(unsigned int ix=0;ix<bHadrons.size();++ix) {
long pix = bHadrons[ix].parents()[0].abspid();
if(pix==511 || pix==413 || pix==521 || pix==523) continue;
map<long,int> nRes = nCount;
int ncount = ntotal;
findChildren(bHadrons[ix],nRes,ncount);
bool matched=false;
for(unsigned int iy=ix+1;iy<bHadrons.size();++iy) {
long piy = bHadrons[ix].parents()[0].abspid();
if(piy==511 || piy==413 || piy==521 || piy==523) continue;
map<long,int> nRes2 = nRes;
int ncount2 = ncount;
findChildren(bHadrons[iy],nRes2,ncount2);
if(ncount2!=0) continue;
matched=true;
for(auto const & val : nRes2) {
if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
if(bHadrons[ix].abspid()==511 ||
bHadrons[ix].abspid()==521) {
if(bHadrons[iy].pid()==-bHadrons[ix].pid())
_nBB->fill();
else
_nBBS->fill();
}
else if(bHadrons[ix].abspid()==513 ||
bHadrons[ix].abspid()==523) {
if(bHadrons[iy].pid()==-bHadrons[ix].pid())
_nBSBS->fill();
else
_nBBS->fill();
}
break;
}
}
if(matched) break;
}
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int iy=1;iy<4;++iy) {
double sigma,error;
if(iy==1) {
sigma = _nBB->val();
error = _nBB->err();
}
else if(iy==2) {
sigma = _nBBS->val();
error = _nBBS->err();
}
else {
sigma = _nBSBS->val();
error = _nBSBS->err();
}
sigma *= crossSection()/ sumOfWeights() /picobarn;
error *= crossSection()/ sumOfWeights() /picobarn;
Scatter2D temphisto(refData( 1, 1, iy));
Scatter2DPtr mult;
book(mult, 1, 1, iy);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
mult->addPoint(x, sigma, ex, make_pair(error,error));
}
else {
mult->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
}
///@}
/// @name Histograms
///@{
CounterPtr _nBB,_nBBS,_nBSBS;
///@}
};
RIVET_DECLARE_PLUGIN(BELLE_2021_I1859137);
}
|