Rivet Analyses Reference

BESIII_2017_I1506414

Analysis of $J/\psi$ and $\psi(2S)$ decays to $\Xi^0\bar\Xi^0$ and $\Sigma^{*0}\bar\Sigma^{*0}$
Experiment: BESIII (BEPC)
Inspire ID: 1506414
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Lett. B770 (2017) 217-225
Beams: e- e+
Beam energies: (1.6, 1.6); (1.8, 1.8) GeV
Run details:
  • e+e- > J/psi and Psi(2S). Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Analysis of the angular distribution of the baryons produced in $e^+e^-\to J/\psi,\psi(2S) \to \Xi^0\bar\Xi^0$ and $\Sigma^{*0}\bar\Sigma^{*0}$. Gives information about the decay and is useful for testing correlations in hadron decays. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: BESIII_2017_I1506414.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Add a short analysis description here
  class BESIII_2017_I1506414 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2017_I1506414);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(Beam(), "Beams");
      declare(UnstableParticles(), "UFS");
      declare(FinalState(), "FS");
	      
      // Book histograms
      if(isCompatibleWithSqrtS(3.1,1e-1)) {
	book(_h_xi , 1, 1, 2);
	book(_h_sig, 1, 1, 1);
      }
      else if (isCompatibleWithSqrtS(3.686, 1E-1)) {
	book(_h_xi , 1, 1, 4);
	book(_h_sig, 1, 1, 3);
      }
    }

    void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
      for( const Particle &child : p.children()) {
	if(child.children().empty()) {
	  nRes[child.pid()]-=1;
	  --ncount;
	}
	else
	  findChildren(child,nRes,ncount);
      }
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // get the axis, direction of incoming electron
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      Vector3 axis;
      if(beams.first.pid()>0)
	axis = beams.first .momentum().p3().unit();
      else
	axis = beams.second.momentum().p3().unit();
      // types of final state particles
      const FinalState& fs = apply<FinalState>(event, "FS");
      map<long,int> nCount;
      int ntotal(0);
      for (const Particle& p :  fs.particles()) {
	nCount[p.pid()] += 1;
	++ntotal;
      }


      const UnstableParticles & ufs = apply<UnstableParticles>(event, "UFS");
      for (const Particle& p :  ufs.particles(Cuts::abspid==3322 or Cuts::abspid==3214)) {
       	if(p.children().empty()) continue;
       	map<long,int> nRes=nCount;
       	int ncount = ntotal;
       	findChildren(p,nRes,ncount);
	bool matched=false;
	// check for antiparticle
	for (const Particle& p2 :  ufs.particles(Cuts::pid==-p.pid())) {
	  if(p2.children().empty()) continue;
	  map<long,int> nRes2=nRes;
	  int ncount2 = ncount;
	  findChildren(p2,nRes2,ncount2);
	  if(ncount2==0) {
	    matched = true;
	    for(auto const & val : nRes2) {
	      if(val.second!=0) {
		matched = false;
		break;
	      }
	    }
	    // fond baryon and antibaryon
	    if(matched) {
	      // calc cosine
	      double ctheta;
	      if(p.pid()>0)
		ctheta = p .momentum().p3().unit().dot(axis);
	      else
		ctheta = p2.momentum().p3().unit().dot(axis);
	      if(abs(p.pid())==3322)
		_h_xi ->fill(ctheta);
	      else if(abs(p.pid())==3214)
		_h_sig->fill(ctheta);
	      break;
	    }
	  }
	}
	if(matched) break;
      }
    }
    
    pair<double,pair<double,double> > calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,make_pair(0.,0.));
      double d = 3./(pow(hist->xMax(),3)-pow(hist->xMin(),3));
      double c = 3.*(hist->xMax()-hist->xMin())/(pow(hist->xMax(),3)-pow(hist->xMin(),3));
      double sum1(0.),sum2(0.),sum3(0.),sum4(0.),sum5(0.);
      for (auto bin : hist->bins() ) {
       	double Oi = bin.area();
	if(Oi==0.) continue;
	double a =  d*(bin.xMax() - bin.xMin());
	double b = d/3.*(pow(bin.xMax(),3) - pow(bin.xMin(),3));
       	double Ei = bin.areaErr();
	sum1 +=   a*Oi/sqr(Ei);
	sum2 +=   b*Oi/sqr(Ei);
	sum3 += sqr(a)/sqr(Ei);
	sum4 += sqr(b)/sqr(Ei);
	sum5 +=    a*b/sqr(Ei);
      }
      // calculate alpha
      double alpha = (-c*sum1 + sqr(c)*sum2 + sum3 - c*sum5)/(sum1 - c*sum2 + c*sum4 - sum5);
      // and error
      double cc = -pow((sum3 + sqr(c)*sum4 - 2*c*sum5),3);
      double bb = -2*sqr(sum3 + sqr(c)*sum4 - 2*c*sum5)*(sum1 - c*sum2 + c*sum4 - sum5);
      double aa =  sqr(sum1 - c*sum2 + c*sum4 - sum5)*(-sum3 - sqr(c)*sum4 + sqr(sum1 - c*sum2 + c*sum4 - sum5) + 2*c*sum5);      
      double dis = sqr(bb)-4.*aa*cc;
      if(dis>0.) {
	dis = sqrt(dis);
	return make_pair(alpha,make_pair(0.5*(-bb+dis)/aa,-0.5*(-bb-dis)/aa));
      }
      else {
	return make_pair(alpha,make_pair(0.,0.));
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      // find energy
      int ioff=-1;
      if(isCompatibleWithSqrtS(3.1,1e-1)) ioff=0;
      else if (isCompatibleWithSqrtS(3.686, 1E-1)) ioff=1;
      normalize(_h_xi,1.,false);
      Scatter2DPtr _h_alpha_xi;
      book(_h_alpha_xi,2,2*ioff+2,1);
      pair<double,pair<double,double> > alpha = calcAlpha(_h_xi);
      _h_alpha_xi->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
			    make_pair(alpha.second.first,alpha.second.second) );
      normalize(_h_sig,1.,false);
      Scatter2DPtr _h_alpha_sig;
      book(_h_alpha_sig,2,2*ioff+1,1);
      alpha = calcAlpha(_h_sig);
      _h_alpha_sig->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
			     make_pair(alpha.second.first,alpha.second.second) );
      
    }
    //@}

    /// @name Histograms
    //@{
    Histo1DPtr _h_xi,_h_sig;
    //@}


  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(BESIII_2017_I1506414);


}