1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief e+e- > K+K- pi0pi0
class BESIII_2020_I1775344 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2020_I1775344);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(FinalState(), "FS");
declare(UnstableParticles(), "UFS");
// histograms
for(unsigned int ix=0;ix<6;++ix) {
std::ostringstream title;
title << "TMP/c_" << ix+1;
book(_c[ix],title.str());
}
if(isCompatibleWithSqrtS(2.125,1e-3)) {
book(_h_KK ,7,1,1);
book(_h_pipi ,7,1,2);
book(_h_Kpi ,7,1,3);
book(_h_KKpi ,7,1,4);
book(_h_Kpipi,7,1,5);
}
else if(isCompatibleWithSqrtS(2.396,1e-3)) {
book(_h_KK ,8,1,1);
book(_h_pipi ,8,1,2);
book(_h_Kpi ,8,1,3);
book(_h_KKpi ,8,1,4);
book(_h_Kpipi,8,1,5);
}
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for (const Particle &child : p.children()) {
if(child.children().empty()) {
nRes[child.pid()]-=1;
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const FinalState& fs = apply<FinalState>(event, "FS");
// find the final-state particles
map<long,int> nCount;
int ntotal(0);
Particles Kp,pi0;
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
if(p.abspid()==321)
Kp.push_back(p);
else if(p.pid()==111)
pi0.push_back(p);
}
// intermediates
const FinalState& ufs = apply<FinalState>(event, "UFS");
for (const Particle& p : ufs.particles(Cuts::abspid==100321 or
Cuts::abspid==10323 or
Cuts::abspid==20323 or
Cuts::pid ==333 or
Cuts::abspid==323 )) {
if(p.children().empty()) continue;
map<long,int> nRes=nCount;
int ncount = ntotal;
findChildren(p,nRes,ncount);
// X-/+ with K+/-
if((p.abspid()==100321 || p.abspid()== 10323 || p.abspid()==20323) && ncount==1) {
bool matched = true;
int Kid = -p.pid()/p.abspid()*321;
for(auto const & val : nRes) {
if(val.first==Kid) {
if(val.second!=1) {
matched = false;
break;
}
}
else if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
if(p.abspid()==100321)
_c[2]->fill();
else if(p.abspid()== 20323)
_c[3]->fill();
else if(p.abspid()==10323)
_c[4]->fill();
}
}
// phi + 2pi0
else if(p.pid()==333 && ncount==2) {
bool matched = true;
for(auto const & val : nRes) {
if(val.first==111) {
if(val.second!=2) {
matched = false;
break;
}
}
else if(val.second!=0) {
matched = false;
break;
}
}
if(matched)
_c[1]->fill();
}
// K*K*
else if(p.abspid()==323) {
for (const Particle& p2 : ufs.particles(Cuts::pid==-p.pid())) {
map<long,int> nResB = nRes;
int ncountB = ncount;
findChildren(p2,nResB,ncountB);
if(ncountB!=0) continue;
bool matched = true;
for(auto const & val : nResB) {
if(val.second!=0) {
matched = false;
break;
}
}
if(matched)
_c[5]->fill();
}
}
}
// final-state
if(ntotal==4 && nCount[321]==1 && nCount[-321]==1 && nCount[111]==2) {
_c[0]->fill();
if(_h_KK) {
FourMomentum pKK = Kp[0].momentum()+Kp[1].momentum();
_h_KK->fill(pKK.mass());
FourMomentum pPi = pi0[0].momentum()+pi0[1].momentum();
_h_pipi->fill(pPi.mass());
for(unsigned int ix=0;ix<2;++ix) {
_h_KKpi ->fill((pKK+pi0[ix].momentum()).mass());
_h_Kpipi->fill((pPi+ Kp[ix].momentum()).mass());
for(unsigned int iy=0;iy<2;++iy)
_h_Kpi->fill((Kp[ix].momentum()+pi0[iy].momentum()).mass());
}
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ix=0;ix<6;++ix) {
double sigma = _c[ix]->val()*crossSection()/ sumOfWeights() /nanobarn;;
double error = _c[ix]->err()*crossSection()/ sumOfWeights() /nanobarn;;
Scatter2D temphisto(refData(ix+1, 1, 1));
Scatter2DPtr mult;
book(mult, ix+1, 1, 1);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
mult->addPoint(x, sigma, ex, make_pair(error,error));
}
else {
mult->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
if(_h_KK) {
normalize(_h_KK );
normalize(_h_pipi );
normalize(_h_Kpi );
normalize(_h_KKpi );
normalize(_h_Kpipi);
}
}
///@}
/// @name Histograms
///@{
CounterPtr _c[6];
Histo1DPtr _h_KK, _h_pipi, _h_Kpi, _h_KKpi, _h_Kpipi;
///@}
};
RIVET_DECLARE_PLUGIN(BESIII_2020_I1775344);
}
|