1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Xi- Xibar+ cross section
class BESIII_2020_I1823448 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2020_I1823448);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(FinalState(), "FS");
declare(UnstableParticles(), "UFS");
book(_nXi, "/TMP/nXi" );
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for(const Particle &child : p.children()) {
if(child.children().empty()) {
nRes[child.pid()]-=1;
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const FinalState& fs = apply<FinalState>(event, "FS");
// total hadronic and muonic cross sections
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// find the Xis
const FinalState& ufs = apply<UnstableParticles>(event, "UFS");
for(unsigned int ix=0;ix<ufs.particles().size();++ix) {
const Particle& p1 = ufs.particles()[ix];
if(abs(p1.pid())!=3312) continue;
bool matched = false;
// check fs
bool fs = true;
for(const Particle & child : p1.children()) {
if(child.pid()==p1.pid()) {
fs = false;
break;
}
}
if(!fs) continue;
// find the children
map<long,int> nRes = nCount;
int ncount = ntotal;
findChildren(p1,nRes,ncount);
for(unsigned int iy=ix+1;iy<ufs.particles().size();++iy) {
const Particle& p2 = ufs.particles()[iy];
if(abs(p2.pid())!=3312) continue;
// check fs
bool fs = true;
for(const Particle & child : p2.children()) {
if(child.pid()==p2.pid()) {
fs = false;
break;
}
}
if(!fs) continue;
map<long,int> nRes2 = nRes;
int ncount2 = ncount;
findChildren(p2,nRes2,ncount2);
if(ncount2!=0) continue;
matched=true;
for(auto const & val : nRes2) {
if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
_nXi->fill();
break;
}
}
if(matched) break;
}
}
/// Normalise histograms etc., after the run
void finalize() {
double sigma = _nXi->val();
double error = _nXi->err();
sigma *= crossSection()/ sumOfWeights() /picobarn;
error *= crossSection()/ sumOfWeights() /picobarn;
Scatter2D temphisto(refData(1, 1, 4));
Scatter2DPtr mult;
book(mult,1, 1, 4);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
mult->addPoint(x, sigma, ex, make_pair(error,error));
}
else {
mult->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
///@}
/// @name Histograms
///@{
CounterPtr _nXi;
///@}
};
RIVET_DECLARE_PLUGIN(BESIII_2020_I1823448);
}
|