1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/SmearedJets.hh"
namespace Rivet {
/// @brief CDF properties of 6-jet events with large 6-jet mass
class CDF_1997_S3541940 : public Analysis {
public:
RIVET_DEFAULT_ANALYSIS_CTOR(CDF_1997_S3541940);
void init() {
// Find true jets
const FinalState fs(Cuts::abseta < 4.2);
FastJets fj(fs, FastJets::CDFJETCLU, 0.7);
// Smear jet energy and mass with the 10% uncertainty quoted in the paper
SmearedJets sj_E(fj, [](const Jet& jet){ return P4_SMEAR_MASS_GAUSS(P4_SMEAR_E_GAUSS(jet, 0.1*jet.E()), 0.1*jet.mass()); });
declare(sj_E, "Jets");
book(_h_m6J ,1, 1, 1);
book(_h_X3ppp ,2, 1, 1);
book(_h_X4ppp ,3, 1, 1);
book(_h_costheta3ppp ,4, 1, 1);
book(_h_psi3ppp ,5, 1, 1);
book(_h_f3ppp ,6, 1, 1);
book(_h_f4ppp ,6, 1, 2);
book(_h_f5ppp ,6, 1, 3);
book(_h_XApp ,7, 1, 1);
book(_h_XCp ,8, 1, 1);
book(_h_XE ,9, 1, 1);
book(_h_psiAppBpp ,10, 1, 1);
book(_h_psiCpDp ,11, 1, 1);
book(_h_psiEF ,12, 1, 1);
book(_h_fApp ,13, 1, 1);
book(_h_fBpp ,14, 1, 1);
book(_h_fCp ,15, 1, 1);
book(_h_fDp ,16, 1, 1);
book(_h_fE ,17, 1, 1);
book(_h_fF ,18, 1, 1);
}
void analyze(const Event& event) {
const Jets alljets = apply<JetAlg>(event, "Jets").jets(Cuts::Et > 20*GeV && Cuts::abseta < 3, cmpMomByEt);
Jets jets;
double sumEt = 0.0;
FourMomentum jetsystem(0.0, 0.0, 0.0, 0.0);
for (const Jet& jet : alljets) {
double Et = jet.Et();
bool separated = true;
for (const Jet& ref : jets) {
if (deltaR(jet, ref) < 0.9) {
separated = false;
break;
}
}
if (!separated) continue;
jets.push_back(jet);
sumEt += Et;
jetsystem += jet.momentum();
if (jets.size() >= 6) break;
}
if (jets.size() < 6) vetoEvent;
if (sumEt < 320.0*GeV) vetoEvent;
double m6J = _safeMass(jetsystem);
if (m6J < 520.0*GeV) vetoEvent;
if (getLog().isActive(Log::DEBUG)) {
stringstream ss;
ss << "Jets:\n";
for (const Jet& j : jets) ss << j << "\n";
MSG_DEBUG(ss.str());
}
const LorentzTransform cms_boost = LorentzTransform::mkFrameTransformFromBeta(jetsystem.betaVec());
vector<FourMomentum> jets6;
for (Jet jet : jets) {
jets6.push_back(cms_boost.transform(jet.momentum()));
}
std::sort(jets6.begin(), jets6.end(), FourMomentum::byEDescending());
FourMomentum pE, pF;
vector<FourMomentum> jets5(_reduce(jets6, pE, pF));
std::sort(jets5.begin(), jets5.end(), FourMomentum::byEDescending());
FourMomentum pCp, pDp;
vector<FourMomentum> jets4(_reduce(jets5, pCp, pDp));
std::sort(jets4.begin(), jets4.end(), FourMomentum::byEDescending());
FourMomentum pApp, pBpp;
vector<FourMomentum> jets3(_reduce(jets4, pApp, pBpp));
std::sort(jets3.begin(), jets3.end(), FourMomentum::byEDescending());
FourMomentum p3ppp(jets3[0]);
FourMomentum p4ppp(jets3[1]);
FourMomentum p5ppp(jets3[2]);
double X3ppp = 2.0*p3ppp.E()/m6J;
if (X3ppp > 0.9) vetoEvent;
FourMomentum pAV = cms_boost.transform(_avg_beam_in_lab(m6J, jetsystem.rapidity()));
double costheta3ppp = pAV.p3().unit().dot(p3ppp.p3().unit());
if (fabs(costheta3ppp) > 0.9) vetoEvent;
// 3-jet-system variables
_h_m6J->fill(m6J);
_h_X3ppp->fill(X3ppp);
_h_X4ppp->fill(2.0*p4ppp.E()/m6J);
_h_costheta3ppp->fill(costheta3ppp);
double psi3ppp = _psi(p3ppp, pAV, p4ppp, p5ppp);
_h_psi3ppp->fill(psi3ppp);
_h_f3ppp->fill(_safeMass(p3ppp)/m6J);
_h_f4ppp->fill(_safeMass(p4ppp)/m6J);
_h_f5ppp->fill(_safeMass(p5ppp)/m6J);
// 4 -> 3 jet variables
_h_fApp->fill(_safeMass(pApp)/m6J);
_h_fBpp->fill(_safeMass(pApp)/m6J);
_h_XApp->fill(pApp.E()/(pApp.E()+pBpp.E()));
double psiAppBpp = _psi(pApp, pBpp, pApp+pBpp, pAV);
_h_psiAppBpp->fill(psiAppBpp);
// 5 -> 4 jet variables
_h_fCp->fill(_safeMass(pCp)/m6J);
_h_fDp->fill(_safeMass(pDp)/m6J);
_h_XCp->fill(pCp.E()/(pCp.E()+pDp.E()));
double psiCpDp = _psi(pCp, pDp, pCp+pDp, pAV);
_h_psiCpDp->fill(psiCpDp);
// 6 -> 5 jet variables
_h_fE->fill(_safeMass(pE)/m6J);
_h_fF->fill(_safeMass(pF)/m6J);
_h_XE->fill(pE.E()/(pE.E()+pF.E()));
double psiEF = _psi(pE, pF, pE+pF, pAV);
_h_psiEF->fill(psiEF);
}
void finalize() {
normalize(_h_m6J);
normalize(_h_X3ppp);
normalize(_h_X4ppp);
normalize(_h_costheta3ppp);
normalize(_h_psi3ppp);
normalize(_h_f3ppp);
normalize(_h_f4ppp);
normalize(_h_f5ppp);
normalize(_h_XApp);
normalize(_h_XCp);
normalize(_h_XE);
normalize(_h_psiAppBpp);
normalize(_h_psiCpDp);
normalize(_h_psiEF);
normalize(_h_fApp);
normalize(_h_fBpp);
normalize(_h_fCp);
normalize(_h_fDp);
normalize(_h_fE);
normalize(_h_fF);
}
private:
vector<FourMomentum> _reduce(const vector<FourMomentum>& jets,
FourMomentum& combined1,
FourMomentum& combined2) {
double minMass2 = 1e9;
size_t idx1(jets.size()), idx2(jets.size());
for (size_t i = 0; i < jets.size(); ++i) {
for (size_t j = i+1; j < jets.size(); ++j) {
double mass2 = FourMomentum(jets[i] + jets[j]).mass2();
if (mass2 < minMass2) {
idx1 = i;
idx2 = j;
}
}
}
vector<FourMomentum> newjets;
for (size_t i = 0; i < jets.size(); ++i) {
if (i != idx1 && i != idx2) newjets.push_back(jets[i]);
}
newjets.push_back(jets[idx1] + jets[idx2]);
combined1 = jets[idx1];
combined2 = jets[idx2];
return newjets;
}
FourMomentum _avg_beam_in_lab(const double& m, const double& y) {
const double mt = m/2.0;
FourMomentum beam1(mt, 0, 0, mt);
FourMomentum beam2(mt, 0, 0, -mt);
if (fabs(y) > 1e-3) {
FourMomentum boostvec(cosh(y), 0.0, 0.0, sinh(y));
const LorentzTransform cms_boost = LorentzTransform::mkFrameTransformFromBeta(boostvec.betaVec()).inverse();
beam1 = cms_boost.transform(beam1);
beam2 = cms_boost.transform(beam2);
}
return (beam1.E() > beam2.E()) ? beam1 - beam2 : beam2 - beam1;
}
double _psi(const FourMomentum& p1, const FourMomentum& p2,
const FourMomentum& p3, const FourMomentum& p4) {
Vector3 p1xp2 = p1.p3().cross(p2.p3());
Vector3 p3xp4 = p3.p3().cross(p4.p3());
return mapAngle0ToPi(acos(p1xp2.unit().dot(p3xp4.unit())));
}
double _safeMass(const FourMomentum& p) {
double mass2 = p.mass2();
if (mass2 > 0.0) return sqrt(mass2);
if (mass2 < -1e-5) MSG_WARNING("m2 = " << m2 << ". Assuming m2=0.");
return 0.0;
}
private:
Histo1DPtr _h_m6J;
Histo1DPtr _h_X3ppp, _h_X4ppp;
Histo1DPtr _h_costheta3ppp;
Histo1DPtr _h_psi3ppp;
Histo1DPtr _h_f3ppp, _h_f4ppp, _h_f5ppp;
Histo1DPtr _h_XApp, _h_XCp, _h_XE;
Histo1DPtr _h_psiAppBpp, _h_psiCpDp, _h_psiEF;
Histo1DPtr _h_fApp, _h_fBpp, _h_fCp, _h_fDp, _h_fE, _h_fF;
};
RIVET_DECLARE_ALIASED_PLUGIN(CDF_1997_S3541940, CDF_1997_I442265);
}
|