Rivet Analyses Reference

CDF_2010_S8591881_DY

CDF Run 2 underlying event in Drell-Yan
Experiment: CDF (Tevatron Run 2)
Inspire ID: 849042
Status: VALIDATED
Authors:
  • Hendrik Hoeth
References:
  • Phys.Rev.D82:034001,2010
Beams: p- p+
Beam energies: (980.0, 980.0) GeV
Run details:
  • ppbar collisions at 1960 GeV. * Drell-Yan events with $Z/\gamma* -> e e$ and $Z/\gamma* -> \mu\mu$. * A mass cut $m_{ll} > 70 \text{GeV}$ can be applied on generator level. * Particles with $c \tau > 10 \text{mm}$ should be set stable.

Deepak Kar and Rick Field's measurement of the underlying event in Drell-Yan events. $Z -> ee$ and $Z -> \mu\mu$ events are selected using a $Z$ mass window cut between 70 and 110 GeV. ``Toward'', ``away'' and ``transverse'' regions are defined in the same way as in the original (2001) CDF underlying event analysis. The reconstructed $Z$ defines the $\phi$ direction of the toward region. The leptons are ignored after the $Z$ has been reconstructed. Thus the region most sensitive to the underlying event is the toward region (the recoil jet is boosted into the away region).

Source code: CDF_2010_S8591881_DY.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/ChargedLeptons.hh"

namespace Rivet {


  /// @brief CDF Run II underlying event in Drell-Yan
  ///
  /// @author Hendrik Hoeth
  ///
  /// Measurement of the underlying event in Drell-Yan
  /// \f$ Z/\gamma^* \to e^+ e^- \f$ and
  /// \f$ Z/\gamma^* \to \mu^+ \mu^- \f$ events. The reconstructed
  /// Z defines the \f$ \phi \f$ orientation. A Z mass window cut is applied.
  ///
  /// @par Run conditions
  ///
  /// @arg \f$ \sqrt{s} = \f$ 1960 GeV
  /// @arg produce Drell-Yan events
  /// @arg Set particles with c*tau > 10 mm stable
  /// @arg Z decay mode: Z -> e+e- and Z -> mu+mu-
  /// @arg gamma decay mode: gamma -> e+e- and gamma -> mu+mu-
  /// @arg minimum invariant mass of the fermion pair coming from the Z/gamma: 70 GeV
  class CDF_2010_S8591881_DY : public Analysis {
  public:

    RIVET_DEFAULT_ANALYSIS_CTOR(CDF_2010_S8591881_DY);


    /// @name Analysis methods
    //@{

    void init() {
      // Set up projections
      const ChargedFinalState cfs(Cuts::abseta < 1.0 && Cuts::pT >= 0.5*GeV);
      const ChargedFinalState clfs(Cuts::abseta < 1.0 && Cuts::pT >= 20*GeV);
      declare(cfs, "FS");
      declare(ChargedLeptons(clfs), "CL");

      // Book histograms
      book(_hist_tnchg      , 1, 1, 1);
      book(_hist_pnchg      , 1, 1, 2);
      book(_hist_anchg      , 1, 1, 3);
      book(_hist_pmaxnchg   , 2, 1, 1);
      book(_hist_pminnchg   , 2, 1, 2);
      book(_hist_pdifnchg   , 2, 1, 3);
      book(_hist_tcptsum    , 3, 1, 1);
      book(_hist_pcptsum    , 3, 1, 2);
      book(_hist_acptsum    , 3, 1, 3);
      book(_hist_pmaxcptsum , 4, 1, 1);
      book(_hist_pmincptsum , 4, 1, 2);
      book(_hist_pdifcptsum , 4, 1, 3);
      book(_hist_tcptave    , 5, 1, 1);
      book(_hist_pcptave    , 5, 1, 2);
      book(_hist_tcptmax    , 6, 1, 1);
      book(_hist_pcptmax    , 6, 1, 2);
      book(_hist_zptvsnchg  , 7, 1, 1);
      book(_hist_cptavevsnchg , 8, 1, 1);
      book(_hist_cptavevsnchgsmallzpt , 9, 1, 1);
    }


    /// Do the analysis
    void analyze(const Event& e) {

      const FinalState& fs = apply<FinalState>(e, "FS");
      const size_t numParticles = fs.particles().size();

      // Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
      if (numParticles < 1) {
        MSG_DEBUG("Failed multiplicity cut");
        vetoEvent;
      }

      // Get the leptons
      const Particles& leptons = apply<ChargedLeptons>(e, "CL").chargedLeptons();

      // We want exactly two leptons of the same flavour.
      MSG_DEBUG("lepton multiplicity = " << leptons.size());
      if (leptons.size() != 2 || leptons[0].pid() != -leptons[1].pid() ) vetoEvent;

      // Lepton pT > 20 GeV
      if (leptons[0].pT()/GeV <= 20 || leptons[1].pT()/GeV <= 20) vetoEvent;

      // Lepton pair should have an invariant mass between 70 and 110 and |eta| < 6
      const FourMomentum dilepton = leptons[0].momentum() + leptons[1].momentum();
      if (!inRange(dilepton.mass()/GeV, 70., 110.) || fabs(dilepton.eta()) >= 6) vetoEvent;
      MSG_DEBUG("Dilepton mass = " << dilepton.mass()/GeV << " GeV");
      MSG_DEBUG("Dilepton pT   = " << dilepton.pT()/GeV << " GeV");

      // Calculate the observables
      size_t   numToward(0),     numAway(0);
      long int numTrans1(0),     numTrans2(0);
      double ptSumToward(0.0), ptSumTrans1(0.0), ptSumTrans2(0.0), ptSumAway(0.0);
      double ptMaxToward(0.0), ptMaxTrans1(0.0), ptMaxTrans2(0.0), ptMaxAway(0.0);
      const double phiZ = dilepton.azimuthalAngle();
      const double pTZ  = dilepton.pT();
      /// @todo Replace with for
      for (Particles::const_iterator p = fs.particles().begin(); p != fs.particles().end(); ++p) {
        // Don't use the leptons
        /// @todo Replace with PID::isLepton
        if (abs(p->pid()) < 20) continue;

        const double dPhi = deltaPhi(p->momentum().phi(), phiZ);
        const double pT = p->pT();
        double rotatedphi = p->momentum().phi() - phiZ;
        while (rotatedphi < 0) rotatedphi += 2*PI;

        if (dPhi < PI/3.0) {
          ptSumToward += pT;
          ++numToward;
          if (pT > ptMaxToward)
            ptMaxToward = pT;
        } else if (dPhi < 2*PI/3.0) {
          if (rotatedphi <= PI) {
            ptSumTrans1 += pT;
            ++numTrans1;
            if (pT > ptMaxTrans1)
              ptMaxTrans1 = pT;
          }
          else {
            ptSumTrans2 += pT;
            ++numTrans2;
            if (pT > ptMaxTrans2)
              ptMaxTrans2 = pT;
          }
        } else {
          ptSumAway += pT;
          ++numAway;
          if (pT > ptMaxAway)
            ptMaxAway = pT;
        }
        // We need to subtract the two leptons from the number of particles to get the correct multiplicity
        _hist_cptavevsnchg->fill(numParticles-2, pT);
        if (pTZ < 10)
          _hist_cptavevsnchgsmallzpt->fill(numParticles-2, pT);
      }

      // Fill the histograms
      _hist_tnchg->fill(pTZ, numToward/(4*PI/3));
      _hist_pnchg->fill(pTZ, (numTrans1+numTrans2)/(4*PI/3));
      _hist_pmaxnchg->fill(pTZ, (numTrans1>numTrans2 ? numTrans1 : numTrans2)/(2*PI/3));
      _hist_pminnchg->fill(pTZ, (numTrans1<numTrans2 ? numTrans1 : numTrans2)/(2*PI/3));
      _hist_pdifnchg->fill(pTZ, abs(numTrans1-numTrans2)/(2*PI/3));
      _hist_anchg->fill(pTZ, numAway/(4*PI/3));

      _hist_tcptsum->fill(pTZ, ptSumToward/(4*PI/3));
      _hist_pcptsum->fill(pTZ, (ptSumTrans1+ptSumTrans2)/(4*PI/3));
      _hist_pmaxcptsum->fill(pTZ, (ptSumTrans1>ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/(2*PI/3));
      _hist_pmincptsum->fill(pTZ, (ptSumTrans1<ptSumTrans2 ? ptSumTrans1 : ptSumTrans2)/(2*PI/3));
      _hist_pdifcptsum->fill(pTZ, fabs(ptSumTrans1-ptSumTrans2)/(2*PI/3));
      _hist_acptsum->fill(pTZ, ptSumAway/(4*PI/3));

      if (numToward > 0) {
        _hist_tcptave->fill(pTZ, ptSumToward/numToward);
        _hist_tcptmax->fill(pTZ, ptMaxToward);
      }
      if ((numTrans1+numTrans2) > 0) {
        _hist_pcptave->fill(pTZ, (ptSumTrans1+ptSumTrans2)/(numTrans1+numTrans2));
        _hist_pcptmax->fill(pTZ, (ptMaxTrans1 > ptMaxTrans2 ? ptMaxTrans1 : ptMaxTrans2));
      }

      // We need to subtract the two leptons from the number of particles to get the correct multiplicity
      _hist_zptvsnchg->fill(numParticles-2, pTZ);
    }


    // void finalize() {    }

    //@}


  private:

    Profile1DPtr _hist_tnchg;
    Profile1DPtr _hist_pnchg;
    Profile1DPtr _hist_pmaxnchg;
    Profile1DPtr _hist_pminnchg;
    Profile1DPtr _hist_pdifnchg;
    Profile1DPtr _hist_anchg;
    Profile1DPtr _hist_tcptsum;
    Profile1DPtr _hist_pcptsum;
    Profile1DPtr _hist_pmaxcptsum;
    Profile1DPtr _hist_pmincptsum;
    Profile1DPtr _hist_pdifcptsum;
    Profile1DPtr _hist_acptsum;
    Profile1DPtr _hist_tcptave;
    Profile1DPtr _hist_pcptave;
    Profile1DPtr _hist_tcptmax;
    Profile1DPtr _hist_pcptmax;
    Profile1DPtr _hist_zptvsnchg;
    Profile1DPtr _hist_cptavevsnchg;
    Profile1DPtr _hist_cptavevsnchgsmallzpt;

  };



  RIVET_DECLARE_ALIASED_PLUGIN(CDF_2010_S8591881_DY, CDF_2010_I849042_DY);

}