Rivet Analyses Reference

CLEO_1995_I392704

Decay asymmetries in $\Lambda^+_c\to\Lambda^0\pi^+$ and $\Lambda^+_c\to\Sigma^+\pi^0$
Experiment: CLEO (CESR)
Inspire ID: 392704
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Any process producing Lambda_c baryons
Beams: * *
Beam energies: ANY
Run details:
  • Phys.Lett. B350 (1995) 256-262

Measurement of the decay asymmetries in $\Lambda^+_c\to\Lambda^0\pi^+$ and $\Lambda^+_c\to\Sigma^+\pi^0$ by the CLEO experiment. The asymmetry parameter is extracted by fitting to normalised angular distribution. N.B. the product of the asymmetry parameters for the $\Lambda_c$ and daughter baryon is implemented as this is what is measured, rather than the extracted parameter for the $\Lambda_c$ which relies on other measurements of the parameter for the daughter baryon. This analysis is useful for testing spin correlations in hadron decays.

Source code: CLEO_1995_I392704.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Lambda_c -> Lambda pi and Lambda_c _> Sigma+ pi0 asymmetries
  class CLEO_1995_I392704 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(CLEO_1995_I392704);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {
      // Initialise and register projections
      declare(UnstableParticles(), "UFS" );
      
      // Book histograms
      book(_h_Lambda, 1,1,1);
      book(_h_Sigma , 2,1,1);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // loop over Lambda_c baryons
      for( const Particle& Lambdac : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==4122)) {
	int sign = Lambdac.pid()/4122;
	if(Lambdac.children().size()!=2) continue;
	Particle baryon1;
	bool lambda=true;
	if(Lambdac.children()[0].pid()==sign*3122 && 
	   Lambdac.children()[1].pid()==sign*211) {
	  baryon1 = Lambdac.children()[0];
	}
	else if(Lambdac.children()[1].pid()==sign*3122 && 
		Lambdac.children()[0].pid()==sign*211) {
	  baryon1 = Lambdac.children()[1];
	}
	else if(Lambdac.children()[0].pid()==sign*3222 && 
		Lambdac.children()[1].pid()==111) {
	  baryon1 = Lambdac.children()[0];
	  lambda=false;
	}
	else if(Lambdac.children()[1].pid()==sign*3222 && 
		Lambdac.children()[0].pid()==111) {
	  baryon1 = Lambdac.children()[0];
	  lambda=false;
	}
	else
	  continue;
	int idMeson = lambda ? -sign*211 : 111;
	Particle baryon2;
	if(baryon1.children()[0].pid()== sign*2212 && 
	   baryon1.children()[1].pid()== idMeson) {
	  baryon2 = baryon1.children()[0];
	}
	else if(baryon1.children()[1].pid()== sign*2212 && 
		baryon1.children()[0].pid()== idMeson) {
	  baryon2 = baryon1.children()[1];
	}
	else
	  continue;
	// first boost to the Lambdac rest frame
	LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Lambdac.momentum().betaVec());
	FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
	FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
	// to lambda rest frame
	LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
	Vector3 axis = pbaryon1.p3().unit();
	FourMomentum pp = boost2.transform(pbaryon2);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	if(lambda)
	  _h_Lambda->fill(cTheta);
	else
	  _h_Sigma->fill(cTheta);
      }
    }

    pair<double,double> calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai = 0.5*(bin.xMax()-bin.xMin());
	double bi = 0.5*ai*(bin.xMax()+bin.xMin());
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      // Lambda_c -> Lambda pi+
      normalize(_h_Lambda);
      Scatter2DPtr _h_alpha1;
      book(_h_alpha1,3,1,1);
      pair<double,double> alpha = calcAlpha(_h_Lambda);
      _h_alpha1->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      // Lambda_c -> Sigma+ pi0
      normalize(_h_Sigma);
      Scatter2DPtr _h_alpha2;
      book(_h_alpha2,4,1,1);
      alpha = calcAlpha(_h_Sigma);
      _h_alpha2->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_Lambda, _h_Sigma;
    //@}


  };


  RIVET_DECLARE_PLUGIN(CLEO_1995_I392704);

}