1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief D -> pi,K semi-leptonic q^2
class CLEOC_2008_I769777 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CLEOC_2008_I769777);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS");
// histograms
book(_h_q2_D0_pi,1,1,1);
book(_h_q2_Dp_pi,1,1,2);
book(_h_q2_D0_K ,1,1,3);
book(_h_q2_Dp_K ,1,1,4);
book(_nD0,"TMP/nD0");
book(_nDp,"TMP/nDp");
}
// Calculate the Q2 using mother and daugher meson
double q2(const Particle& B, int mesonID) {
FourMomentum q = B.mom() - filter_select(B.children(), Cuts::abspid==abs(mesonID))[0];
return q*q;
}
// Check for explicit decay into pdgids
bool isSemileptonicDecay(const Particle& mother, vector<int> ids) {
// Trivial check to ignore any other decays but the one in question modulo photons
const Particles children = mother.children(Cuts::pid!=PID::PHOTON);
if (children.size()!=ids.size()) return false;
// Check for the explicit decay
return all(ids, [&](int i){return count(children, hasPID(i))==1;});
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Loop over D mesons
for(const Particle& p : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==PID::D0 or
Cuts::abspid==PID::DPLUS )) {
if (p.abspid()==PID::D0) {
_nD0->fill();
if(isSemileptonicDecay(p, {PID::PIMINUS, PID::POSITRON, PID::NU_E}) ||
isSemileptonicDecay(p, {PID::PIPLUS , PID::ELECTRON, PID::NU_EBAR}) )
_h_q2_D0_pi->fill(q2(p, PID::PIMINUS));
else if(isSemileptonicDecay(p, {PID::KMINUS, PID::POSITRON, PID::NU_E}) ||
isSemileptonicDecay(p, {PID::KPLUS , PID::ELECTRON, PID::NU_EBAR}))
_h_q2_D0_K ->fill(q2(p, PID::KMINUS));
}
else if(p.abspid()==PID::DPLUS) {
_nDp->fill();
if(isSemileptonicDecay(p, {PID::PI0, PID::POSITRON, PID::NU_E}) ||
isSemileptonicDecay(p, {PID::PI0, PID::ELECTRON, PID::NU_EBAR}))
_h_q2_Dp_pi->fill(q2(p, PID::PI0));
else if(isSemileptonicDecay(p, {-311, PID::POSITRON, PID::NU_E}))
_h_q2_Dp_K ->fill(q2(p, -311));
else if(isSemileptonicDecay(p, { 311, PID::ELECTRON, PID::NU_EBAR}))
_h_q2_Dp_K ->fill(q2(p, 311));
else if(isSemileptonicDecay(p, {PID::K0S, PID::POSITRON, PID::NU_E}) ||
isSemileptonicDecay(p, {PID::K0S, PID::ELECTRON, PID::NU_EBAR}))
_h_q2_Dp_K ->fill(q2(p, PID::K0S));
else if(isSemileptonicDecay(p, {PID::K0L, PID::POSITRON, PID::NU_E}) ||
isSemileptonicDecay(p, {PID::K0L, PID::ELECTRON, PID::NU_EBAR}))
_h_q2_Dp_K ->fill(q2(p, PID::K0L));
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h_q2_D0_pi,100./ *_nD0);
scale(_h_q2_D0_K ,100./ *_nD0);
scale(_h_q2_Dp_pi,100./ *_nDp);
scale(_h_q2_Dp_K ,100./ *_nDp);
}
///@}
/// @name Histograms
///@{
Histo1DPtr _h_q2_D0_pi, _h_q2_D0_K, _h_q2_Dp_pi, _h_q2_Dp_K;
CounterPtr _nD0,_nDp;
///@}
};
RIVET_DECLARE_PLUGIN(CLEOC_2008_I769777);
}
|