1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Spectrum for D_s1
class CLEOII_1993_I352823 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CLEOII_1993_I352823);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// projections
declare(Beam(), "Beams");
declare(UnstableParticles(), "UFS");
// book histos
book(_h_x ,3,1,1);
book(_h_cTheta,4,1,1);
book(_r[0],2,1,1);
book(_r[1],2,1,2);
}
bool isK0(int id) {
return id==310 || id==130 || abs(id)==311;
}
/// Perform the per-event analysis
void analyze(const Event& event) {
static const int DsID = 10433;
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double Emax = ( beams.first.p3().mod() + beams.second.p3().mod() ) / 2.0;
const double Pmax = sqrt(sqr(Emax)-sqr(2.535));
const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
for (const Particle& p : ufs.particles(Cuts::abspid==DsID)) {
// spectrum
double xp = p.momentum().p3().mod()/Pmax;
_h_x->fill(xp);
// decay angle
int sign = p.pid()/DsID;
Particle Dstar;
if(p.children().size()!=2) continue;
if(p.children()[0].pid()==sign*423 &&
p.children()[1].pid()==sign*321) {
Dstar = p.children()[0];
}
else if(p.children()[1].pid()==sign*423 &&
p.children()[0].pid()==sign*321) {
Dstar = p.children()[1];
}
else if(p.children()[0].pid()==sign*413 &&
isK0(p.children()[1].pid())) {
_r[1]->fill(0.5);
continue;
}
else if(p.children()[1].pid()==sign*413 &&
isK0(p.children()[0].pid())) {
_r[1]->fill(0.5);
continue;
}
else {
continue;
}
_r[0]->fill(0.5);
if(Dstar.children().size()!=2) continue;
Particle pion;
if(Dstar.children()[0].pid()== 111 &&
Dstar.children()[1].pid()== sign*421) {
pion = Dstar.children()[0];
}
else if(Dstar.children()[1].pid()== 111 &&
Dstar.children()[0].pid()== sign*421) {
pion = Dstar.children()[1];
}
else
continue;
// first boost to the D_s1 rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(p.momentum().betaVec());
FourMomentum pDstar = boost1.transform(Dstar.momentum());
FourMomentum pPion = boost1.transform(pion .momentum());
// to D* rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pDstar.betaVec());
Vector3 axis = pDstar.p3().unit();
FourMomentum pp = boost2.transform(pPion);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
_h_cTheta->fill(cTheta);
}
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_h_x );
normalize(_h_cTheta);
scale(_r[0],crossSection()/sumOfWeights()/picobarn);
scale(_r[1],crossSection()/sumOfWeights()/picobarn);
}
///@}
/// @name Histograms
///@{
Histo1DPtr _h_x,_h_cTheta;
Histo1DPtr _r[2];
///@}
};
RIVET_DECLARE_PLUGIN(CLEOII_1993_I352823);
}
|