1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief D_10 and D_20 spectra
class CLEOII_1994_I372349 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CLEOII_1994_I372349);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// projections
declare(Beam(), "Beams");
declare(UnstableParticles(), "UFS");
// book histos
book(_h_D2_cTheta,2,1,1);
book(_h_D2_x ,1,1,1);
book(_h_D1_cTheta,2,1,2);
book(_h_D1_x ,1,1,2);
for(unsigned int ix=0;ix<3;++ix)
book(_r[ix],3,1,ix+1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
static const int idD1 = 10423;
static const int idD2 = 425;
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double Emax = ( beams.first.p3().mod() + beams.second.p3().mod() ) / 2.0;
const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
for (const Particle& p : ufs.particles(Cuts::abspid==idD1 or Cuts::abspid==idD2)) {
if(p.abspid()==idD1) {
// spectrum
double Pmax = sqrt(sqr(Emax)-sqr(2.421));
double xp = p.momentum().p3().mod()/Pmax;
_h_D1_x->fill(xp);
}
else {
double Pmax = sqrt(sqr(Emax)-sqr(2.461));
double xp = p.momentum().p3().mod()/Pmax;
_h_D2_x->fill(xp);
}
int sign = p.pid()/p.abspid();
Particle Dstar;
if(p.children().size()!=2) continue;
if(p.children()[0].pid()==sign*413 &&
p.children()[1].pid()==-sign*211) {
Dstar = p.children()[0];
}
else if(p.children()[1].pid()==sign*413 &&
p.children()[0].pid()==-sign*211) {
Dstar = p.children()[1];
}
else if(p.children()[0].pid()==sign*411 &&
p.children()[1].pid()==-sign*211) {
if(p.abspid()!=idD1) _r[0]->fill(0.5);
continue;
}
else if(p.children()[1].pid()==sign*411 &&
p.children()[0].pid()==-sign*211) {
if(p.abspid()!=idD1) _r[0]->fill(0.5);
continue;
}
else {
continue;
}
if(p.abspid()==idD1)
_r[2]->fill(0.5);
else
_r[1]->fill(0.5);
if(Dstar.children().size()!=2) continue;
Particle pion;
if(Dstar.children()[0].pid()== sign*211 &&
Dstar.children()[1].pid()== sign*421) {
pion = Dstar.children()[0];
}
else if(Dstar.children()[1].pid()== sign*211 &&
Dstar.children()[0].pid()== sign*421) {
pion = Dstar.children()[1];
}
else
continue;
// first boost to the D_1,2 rest frame
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(p.momentum().betaVec());
FourMomentum pDstar = boost1.transform(Dstar.momentum());
FourMomentum pPion = boost1.transform(pion .momentum());
// to D* rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pDstar.betaVec());
Vector3 axis = pDstar.p3().unit();
FourMomentum pp = boost2.transform(pPion);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
if(p.abspid()==idD1)
_h_D1_cTheta->fill(cTheta);
else
_h_D2_cTheta->fill(cTheta);
}
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_h_D2_cTheta);
normalize(_h_D2_x );
normalize(_h_D1_cTheta);
normalize(_h_D1_x );
for(unsigned int ix=0;ix<3;++ix)
scale(_r[ix],crossSection()/sumOfWeights()/picobarn);
}
///@}
/// @name Histograms
///@{
Histo1DPtr _h_D2_cTheta,_h_D2_x,_h_D1_cTheta,_h_D1_x;
Histo1DPtr _r[3];
///@}
};
RIVET_DECLARE_PLUGIN(CLEOII_1994_I372349);
}
|