1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Xi-> Lambda pi asymmetry
class CLEOII_2000_I533575 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CLEOII_2000_I533575);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS" );
// Book histograms
book(_h_cthetaM, 2,1,1);
book(_h_cthetaP, 2,1,2);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// loop over Xi- baryons
for (const Particle& Xi : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==3312)) {
int sign = Xi.pid()/3312;
if(Xi.children().size()!=2) continue;
Particle Lambda,pion1;
if(Xi.children()[0].pid()==sign*3122 &&
Xi.children()[1].pid()==-sign*211) {
Lambda = Xi.children()[0];
pion1 = Xi.children()[1];
}
else if(Xi.children()[1].pid()==sign*3122 &&
Xi.children()[0].pid()==-sign*211) {
Lambda = Xi.children()[1];
pion1 = Xi.children()[0];
}
else
continue;
if(Lambda.children().size()!=2) continue;
Particle proton,pion2;
if(Lambda.children()[0].pid()==sign*2212 &&
Lambda.children()[1].pid()==-sign*211) {
proton = Lambda.children()[0];
pion2 = Lambda.children()[1];
}
else if(Lambda.children()[1].pid()==sign*2212 &&
Lambda.children()[0].pid()==-sign*211) {
proton = Lambda.children()[1];
pion2 = Lambda.children()[0];
}
else
continue;
// boost to xi rest frame first
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Xi.momentum().betaVec());
FourMomentum pLambda = boost1.transform(Lambda.momentum());
FourMomentum pproton = boost1.transform(proton.momentum());
// to lambda rest frame
LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pLambda.betaVec());
Vector3 axis = pLambda.p3().unit();
FourMomentum pp = boost2.transform(pproton);
// calculate angle
double cTheta = pp.p3().unit().dot(axis);
if(sign==1) {
_h_cthetaM->fill(cTheta);
}
else {
_h_cthetaP->fill(cTheta);
}
}
}
pair<double,double> calcAlpha(Histo1DPtr hist) {
if(hist->numEntries()==0.) return make_pair(0.,0.);
double sum1(0.),sum2(0.);
for (auto bin : hist->bins() ) {
double Oi = bin.area();
if(Oi==0.) continue;
double ai = 0.5*(bin.xMax()-bin.xMin());
double bi = 0.5*ai*(bin.xMax()+bin.xMin());
double Ei = bin.areaErr();
sum1 += sqr(bi/Ei);
sum2 += bi/sqr(Ei)*(Oi-ai);
}
return make_pair(sum2/sum1,sqrt(1./sum1));
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_h_cthetaP);
normalize(_h_cthetaM);
// calculate the values of alpha
// xibar+
Scatter2DPtr _h_alphaP;
book(_h_alphaP, 1,1,2);
pair<double,double> alpha = calcAlpha(_h_cthetaP);
_h_alphaP->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
make_pair(alpha.second,alpha.second) );
// xi-
Scatter2DPtr _h_alphaM;
book(_h_alphaM, 1,1,1);
alpha = calcAlpha(_h_cthetaM);
_h_alphaM->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
make_pair(alpha.second,alpha.second) );
}
///@}
/// @name Histograms
///@{
Histo1DPtr _h_cthetaP,_h_cthetaM;
///@}
};
RIVET_DECLARE_PLUGIN(CLEOII_2000_I533575);
}
|