Rivet Analyses Reference

CMS_2011_S8973270

$B/\bar{B}$ angular correlations based on secondary vertex reconstruction in $pp$ collisions
Experiment: CMS (LHC)
Inspire ID: 889807
Status: VALIDATED
Authors:
  • Lukas Wehrli
References:Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • Inclusive QCD at 7 TeV. A $\hat{p_\perp}$ cut (or similar) is recommended since a leading jet $p_\perp > 56$ GeV is required.

The differential $B\bar{B}$ cross-section is measured as a function of the opening angle $\Delta{R}$ and $\Delta\phi$ using data collected with the CMS detector during 2010 and corresponding to an integrated luminosity of 3.1 pb$^{-1}$. The measurement is performed for three different event energy scales, characterized by the transverse momentum of the leading jet in the event (above 56 GeV, above 84 GeV and above 120 GeV). Simulated events are normalised in the region $\Delta{R} > 2.4$ and $\Delta\phi > 3/4\pi$ respectively.

Source code: CMS_2011_S8973270.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {


  /// B-Bbar angular correlations based on secondary vertex reconstruction
  class CMS_2011_S8973270 : public Analysis {
  public:

    RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2011_S8973270);


    /// @name Analysis methods
    /// @{

    void init() {
      FinalState fs;
      FastJets jetproj(fs, FastJets::ANTIKT, 0.5);
      jetproj.useInvisibles();
      declare(jetproj, "Jets");

      UnstableParticles ufs;
      declare(ufs, "UFS");

      // Book histograms
      book(_h_dsigma_dR_56GeV ,1,1,1);
      book(_h_dsigma_dR_84GeV ,2,1,1);
      book(_h_dsigma_dR_120GeV ,3,1,1);
      book(_h_dsigma_dPhi_56GeV ,4,1,1);
      book(_h_dsigma_dPhi_84GeV ,5,1,1);
      book(_h_dsigma_dPhi_120GeV ,6,1,1);

      book(_c["MCDR56"],     "_MCDR56");
      book(_c["MCDR84"],     "_MCDR84");
      book(_c["MCDR120"],    "_MCDR120");
      book(_c["MCDPhi56"],   "_MCDPhi56");
      book(_c["MCDPhi84"],   "_MCDPhi84");
      book(_c["MCDPhi120"], "_MCDPhi120");
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const double weight = 1.0;

      const Jets& jets = apply<FastJets>(event,"Jets").jetsByPt();
      const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");

      // Find the leading jet pT and eta
      if (jets.size() == 0) vetoEvent;
      const double ljpT = jets[0].pT();
      const double ljeta = jets[0].eta();
      MSG_DEBUG("Leading jet pT / eta: " << ljpT << " / " << ljeta);

      // Minimum requirement for event
      if (ljpT > 56*GeV && fabs(ljeta) < 3.0) {
        // Find B hadrons in event
        int nab = 0, nb = 0; //counters for all B and independent B hadrons
        double etaB1 = 7.7, etaB2 = 7.7;
        double phiB1 = 7.7, phiB2 = 7.7;
        double pTB1 = 7.7, pTB2 = 7.7;

        for (const Particle& p : ufs.particles()) {
          int aid = p.abspid();
          if (aid/100 == 5 || aid/1000==5) {
            nab++;
            // 2J+1 == 1 (mesons) or 2 (baryons)
            if (aid%10 == 1 || aid%10 == 2) {
              // No B decaying to B
              if (aid != 5222 && aid != 5112 && aid != 5212 && aid != 5322) {
                if (nb==0) {
                  etaB1 = p.eta();
                  phiB1 = p.phi();
                  pTB1 = p.pT();
                } else if (nb==1) {
                  etaB2 = p.eta();
                  phiB2 = p.phi();
                  pTB2 = p.pT();
                }
                nb++;
              }
            }
            MSG_DEBUG("ID " << aid <<  " B hadron");
          }
        }

        if (nb==2 && pTB1 > 15*GeV && pTB2 > 15*GeV && fabs(etaB1) < 2.0 && fabs(etaB2) < 2.0) {
          double dPhi = deltaPhi(phiB1, phiB2);
          double dR = deltaR(etaB1, phiB1, etaB2, phiB2);
          MSG_DEBUG("DR/DPhi " << dR << " " << dPhi);

          // MC counters
          if (dR > 2.4) _c["MCDR56"]->fill();
          if (dR > 2.4 && ljpT > 84*GeV) _c["MCDR84"]->fill();
          if (dR > 2.4 && ljpT > 120*GeV) _c["MCDR120"]->fill();
          if (dPhi > 3.*PI/4.) _c["MCDPhi56"]->fill();
          if (dPhi > 3.*PI/4. && ljpT > 84*GeV) _c["MCDPhi84"]->fill();
          if (dPhi > 3.*PI/4. && ljpT > 120*GeV) _c["MCDPhi120"]->fill();

          _h_dsigma_dR_56GeV->fill(dR, weight);
          if (ljpT > 84*GeV) _h_dsigma_dR_84GeV->fill(dR, weight);
          if (ljpT > 120*GeV) _h_dsigma_dR_120GeV->fill(dR, weight);
          _h_dsigma_dPhi_56GeV->fill(dPhi, weight);
          if (ljpT > 84*GeV) _h_dsigma_dPhi_84GeV->fill(dPhi, weight);
          if (ljpT > 120*GeV) _h_dsigma_dPhi_120GeV->fill(dPhi, weight);
          //MSG_DEBUG("nb " << nb << " " << nab);
        }
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      MSG_DEBUG("crossSection " << crossSection() << " sumOfWeights " << sumOfWeights());

      // Hardcoded bin widths
      double DRbin = 0.4;
      double DPhibin = PI/8.0;
      // Find out the correct numbers
      double nDataDR56 = 25862.20;
      double nDataDR84 = 5675.55;
      double nDataDR120 = 1042.72;
      double nDataDPhi56 = 24220.00;
      double nDataDPhi84 = 4964.00;
      double nDataDPhi120 = 919.10;
      double normDR56 = safediv(nDataDR56, dbl(*_c["MCDR56"]), crossSection()/sumOfWeights());
      double normDR84 = safediv(nDataDR84, dbl(*_c["MCDR84"]), crossSection()/sumOfWeights());
      double normDR120 = safediv(nDataDR120, dbl(*_c["MCDR120"]), crossSection()/sumOfWeights());
      double normDPhi56 = safediv(nDataDPhi56, dbl(*_c["MCDPhi56"]), crossSection()/sumOfWeights());
      double normDPhi84 = safediv(nDataDPhi84, dbl(*_c["MCDPhi84"]), crossSection()/sumOfWeights());
      double normDPhi120 = safediv(nDataDPhi120, dbl(*_c["MCDPhi120"]), crossSection()/sumOfWeights());
      scale(_h_dsigma_dR_56GeV, normDR56*DRbin);
      scale(_h_dsigma_dR_84GeV, normDR84*DRbin);
      scale(_h_dsigma_dR_120GeV, normDR120*DRbin);
      scale(_h_dsigma_dPhi_56GeV, normDPhi56*DPhibin);
      scale(_h_dsigma_dPhi_84GeV, normDPhi84*DPhibin);
      scale(_h_dsigma_dPhi_120GeV, normDPhi120*DPhibin);
    }

    /// @}


  private:

    /// Counters
    map<string, CounterPtr> _c;

    /// @name Histograms
    /// @{
    Histo1DPtr _h_dsigma_dR_56GeV, _h_dsigma_dR_84GeV, _h_dsigma_dR_120GeV;
    Histo1DPtr _h_dsigma_dPhi_56GeV, _h_dsigma_dPhi_84GeV, _h_dsigma_dPhi_120GeV;
    /// @}

  };



  RIVET_DECLARE_ALIASED_PLUGIN(CMS_2011_S8973270, CMS_2011_I889807);

}