Rivet Analyses Reference

CMS_2013_I1209721

Azimuthal correlations and event shapes in $Z$ + jets in $pp$ collisions at 7 TeV
Experiment: CMS (LHC)
Inspire ID: 1209721
Status: VALIDATED
Authors:
  • Io Odderskov
References:
  • http://cms.cern.ch/iCMS/analysisadmin/cadi?ancode=EWK-11-021
  • https://cds.cern.ch/record/1503578
  • http://inspirehep.net/record/1209721
  • arXiv: 1301.1646
  • Submitted to Phys. Lett. B
Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • Run MC generators with Z decaying to leptonic modes at 7TeV comEnergy

Measurements are presented of event shapes and azimuthal correlations in the inclusive production of a Z boson in association with jets in proton-proton collisions. The data correspond to an integrated luminosity of 5.0/fb, collected with the CMS detector at the CERN LHC at $\sqrt{s} = 7$ TeV. This to test perturbative QCD predictions and evaluate a substantial background to most physics channels. Studies performed as a function of jet multiplicity for inclusive $Z$ boson production and for $Z$ bosons with transverse-momenta greater than 150 GeV, are compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The results are corrected for detector effects, and can therefore be used as input to improve models for describing these processes.

Source code: CMS_2013_I1209721.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/ZFinder.hh"
#include "Rivet/Projections/Thrust.hh"

namespace Rivet {

  


  /// CMS Z+jets delta(phi) and jet thrust measurement at 7 TeV
  class CMS_2013_I1209721 : public Analysis {
  public:

    CMS_2013_I1209721()
      : Analysis("CMS_2013_I1209721")
    {    }


    /// Book projections and histograms
    void init() {
      // Full final state
      const FinalState fs((Cuts::etaIn(-5.0,5.0)));
      declare(fs, "FS");
      // Z finders for electrons and muons
      Cut cuts = Cuts::abseta < 2.4 && Cuts::pT > 20*GeV;
      const ZFinder zfe(fs, cuts, PID::ELECTRON, 71*GeV, 111*GeV);
      const ZFinder zfm(fs, cuts, PID::MUON,     71*GeV, 111*GeV);
      declare(zfe, "ZFE");
      declare(zfm, "ZFM");
      // Jets
      const FastJets jets(fs, FastJets::ANTIKT, 0.5);
      declare(jets, "JETS");

      // Book histograms from data
      for (size_t i = 0; i < 2; ++i) {
        book(_histDeltaPhiZJ1_1[i]  ,1+i*9, 1, 1);
        book(_histDeltaPhiZJ1_2[i]  ,2+i*9, 1, 1);
        book(_histDeltaPhiZJ1_3[i]  ,4+i*9, 1, 1);
        book(_histDeltaPhiZJ2_3[i]  ,5+i*9, 1, 1);
        book(_histDeltaPhiZJ3_3[i]  ,3+i*9, 1, 1);
        book(_histDeltaPhiJ1J2_3[i] ,6+i*9, 1, 1);
        book(_histDeltaPhiJ1J3_3[i] ,7+i*9, 1, 1);
        book(_histDeltaPhiJ2J3_3[i] ,8+i*9, 1, 1);
        book(_histTransvThrust[i]   ,9+i*9, 1, 1);
      }
    }


    void analyze(const Event& event) {
      const double weight = 1.0;

      // Apply the Z finders
      const ZFinder& zfe = apply<ZFinder>(event, "ZFE");
      const ZFinder& zfm = apply<ZFinder>(event, "ZFM");

      // Choose the Z candidate (there must be one)
      if (zfe.empty() && zfm.empty()) vetoEvent;
      const Particles& z = !zfm.empty() ? zfm.bosons() : zfe.bosons();
      const Particles& leptons = !zfm.empty() ? zfm.constituents() : zfe.constituents();

      // Determine whether we are in the boosted regime
      const bool is_boosted = (z[0].pT() > 150*GeV);

      // Build the jets
      const FastJets& jetfs = apply<FastJets>(event, "JETS");
      const Jets& jets = jetfs.jetsByPt(Cuts::pT > 50*GeV && Cuts::abseta < 2.5);

      // Clean the jets against the lepton candidates, as in the paper, with a deltaR cut of 0.4 against the clustered leptons
      vector<const Jet*> cleanedJets;
      for (size_t i = 0; i < jets.size(); ++i) {
        bool isolated = true;
        for (size_t j = 0; j < 2; ++j) {
          if (deltaR(leptons[j], jets[i]) < 0.4) {
            isolated = false;
            break;
          }
        }
        if (isolated) cleanedJets.push_back(&jets[i]);
      }

      // Require at least 1 jet
      const unsigned int Njets = cleanedJets.size();
      if (Njets < 1) vetoEvent;

      // Now compute the thrust
      // Collect Z and jets transverse momenta to calculate transverse thrust
      vector<Vector3> momenta;
      momenta.clear();
      Vector3 mom = z[0].p3();
      mom.setZ(0);
      momenta.push_back(mom);

      for (size_t i = 0; i < cleanedJets.size(); ++i) {
        Vector3 mj = cleanedJets[i]->momentum().p3();
        mj.setZ(0);
        momenta.push_back(mj);
      }

      if (momenta.size() <= 2){
        // We need to use a ghost so that Thrust.calc() doesn't return 1.
        momenta.push_back(Vector3(0.0000001,0.0000001,0.));
      }

      Thrust thrust; thrust.calc(momenta);
      const double T = thrust.thrust();
      FILLx2(_histTransvThrust, is_boosted, log(max(1-T, 1e-6)), weight);

      const double dphiZJ1 = deltaPhi(z[0], *cleanedJets[0]);
      FILLx2(_histDeltaPhiZJ1_1, is_boosted, dphiZJ1, weight);
      if (Njets > 1) {
        FILLx2(_histDeltaPhiZJ1_2, is_boosted, dphiZJ1, weight);
        if (Njets > 2) {
          FILLx2(_histDeltaPhiZJ1_3,  is_boosted, dphiZJ1, weight);
          FILLx2(_histDeltaPhiZJ2_3,  is_boosted, deltaPhi(z[0], *cleanedJets[1]), weight);
          FILLx2(_histDeltaPhiZJ3_3,  is_boosted, deltaPhi(z[0], *cleanedJets[2]), weight);
          FILLx2(_histDeltaPhiJ1J2_3, is_boosted, deltaPhi(*cleanedJets[0], *cleanedJets[1]), weight);
          FILLx2(_histDeltaPhiJ1J3_3, is_boosted, deltaPhi(*cleanedJets[0], *cleanedJets[2]), weight);
          FILLx2(_histDeltaPhiJ2J3_3, is_boosted, deltaPhi(*cleanedJets[1], *cleanedJets[2]), weight);
        }
      }
    }


    /// Normalizations
    /// @note Most of these data normalizations neglect the overflow bins
    void finalize() {
      for (size_t i = 0; i < 2; ++i) {
        normalize(_histDeltaPhiZJ1_1[i], 1, false);
        normalize(_histDeltaPhiZJ1_2[i], 1, false);
        normalize(_histDeltaPhiZJ1_3[i], 1, false);
        normalize(_histDeltaPhiZJ2_3[i], 1, false);
        normalize(_histDeltaPhiZJ3_3[i], 1, false);
        normalize(_histDeltaPhiJ1J2_3[i], 1, false);
        normalize(_histDeltaPhiJ1J3_3[i], 1, false);
        normalize(_histDeltaPhiJ2J3_3[i], 1, false);
        normalize(_histTransvThrust[i]);
      }
    }


  private:


    // Define a helper to appropriately fill both unboosted and boosted histo versions
    void FILLx2(Histo1DPtr* HNAME, bool is_boosted, double VAL, double weight) { 
      double x = VAL; 
      for (size_t i = 0; i < 2; ++i) {
        if (i == 0 || is_boosted) 
          HNAME[i]->fill(x, weight); 
      }
    }



    // Arrays of unboosted/boosted histos
    Histo1DPtr _histDeltaPhiZJ1_1[2];
    Histo1DPtr _histDeltaPhiZJ1_2[2];
    Histo1DPtr _histDeltaPhiZJ1_3[2];
    Histo1DPtr _histDeltaPhiZJ2_3[2];
    Histo1DPtr _histDeltaPhiZJ3_3[2];
    Histo1DPtr _histDeltaPhiJ1J2_3[2];
    Histo1DPtr _histDeltaPhiJ1J3_3[2];
    Histo1DPtr _histDeltaPhiJ2J3_3[2];
    Histo1DPtr _histTransvThrust[2];

  };


  RIVET_DECLARE_PLUGIN(CMS_2013_I1209721);

}