1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ZFinder.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// CMS cross-section and angular correlations in Z boson + b-hadrons events at 7 TeV
class CMS_2013_I1256943 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2013_I1256943);
/// Add projections and book histograms
void init() {
book(_sumW, "sumW");
book(_sumW50, "sumW50");
book(_sumWpT, "sumWpT");
FinalState fs(Cuts::abseta < 2.4 && Cuts::pT > 20*GeV);
declare(fs, "FS");
UnstableParticles ufs(Cuts::abseta < 2 && Cuts::pT > 15*GeV);
declare(ufs, "UFS");
Cut zetacut = Cuts::abseta < 2.4;
ZFinder zfindermu(fs, zetacut, PID::MUON, 81.0*GeV, 101.0*GeV, 0.1, ZFinder::ClusterPhotons::NONE, ZFinder::AddPhotons::YES, 91.2*GeV);
declare(zfindermu, "ZFinderMu");
ZFinder zfinderel(fs, zetacut, PID::ELECTRON, 81.0*GeV, 101.0*GeV, 0.1, ZFinder::ClusterPhotons::NONE, ZFinder::AddPhotons::YES, 91.2*GeV);
declare(zfinderel, "ZFinderEl");
// Histograms in non-boosted region of Z pT
book(_h_dR_BB ,1, 1, 1);
book(_h_dphi_BB ,2, 1, 1);
book(_h_min_dR_ZB ,3, 1, 1);
book(_h_A_ZBB ,4, 1, 1);
// Histograms in boosted region of Z pT (pT > 50 GeV)
book(_h_dR_BB_boost ,5, 1, 1);
book(_h_dphi_BB_boost ,6, 1, 1);
book(_h_min_dR_ZB_boost ,7, 1, 1);
book(_h_A_ZBB_boost ,8, 1, 1);
book(_h_min_ZpT ,9,1,1);
}
/// Do the analysis
void analyze(const Event& e) {
const UnstableParticles& ufs = apply<UnstableParticles>(e, "UFS");
const ZFinder& zfindermu = apply<ZFinder>(e, "ZFinderMu");
const ZFinder& zfinderel = apply<ZFinder>(e, "ZFinderEl");
// Look for a Z --> mu+ mu- event in the final state
if (zfindermu.empty() && zfinderel.empty()) vetoEvent;
const Particles& z = !zfindermu.empty() ? zfindermu.bosons() : zfinderel.bosons();
const bool is_boosted = ( z[0].pT() > 50*GeV );
// Loop over the unstable particles
vector<FourMomentum> Bmom;
for (const Particle& p : ufs.particles()) {
const PdgId pid = p.pid();
// Look for particles with a bottom quark
if (PID::hasBottom(pid)) {
bool good_B = false;
ConstGenParticlePtr pgen = p.genParticle();
ConstGenVertexPtr vgen = pgen -> end_vertex();
// Loop over the decay products of each unstable particle, looking for a b-hadron pair
/// @todo Avoid HepMC API
for (ConstGenParticlePtr it: HepMCUtils::particles(vgen, Relatives::CHILDREN)){
// If the particle produced has a bottom quark do not count it and go to the next loop cycle.
if (!( PID::hasBottom( it->pdg_id() ) ) ) {
good_B = true;
continue;
} else {
good_B = false;
break;
}
}
if (good_B ) Bmom.push_back( p.momentum() );
}
else continue;
}
// If there are more than two B's in the final state veto the event
if (Bmom.size() != 2 ) vetoEvent;
// Calculate the observables
double dphiBB = deltaPhi(Bmom[0], Bmom[1]);
double dRBB = deltaR(Bmom[0], Bmom[1]);
const FourMomentum& pZ = z[0].momentum();
const bool closest_B = ( deltaR(pZ, Bmom[0]) < deltaR(pZ, Bmom[1]) );
const double mindR_ZB = closest_B ? deltaR(pZ, Bmom[0]) : deltaR(pZ, Bmom[1]);
const double maxdR_ZB = closest_B ? deltaR(pZ, Bmom[1]) : deltaR(pZ, Bmom[0]);
const double AZBB = ( maxdR_ZB - mindR_ZB ) / ( maxdR_ZB + mindR_ZB );
// Fill the histograms in the non-boosted region
_h_dphi_BB->fill(dphiBB);
_h_dR_BB->fill(dRBB);
_h_min_dR_ZB->fill(mindR_ZB);
_h_A_ZBB->fill(AZBB);
_sumW->fill();
_sumWpT->fill();
// Fill the histograms in the boosted region
if (is_boosted) {
_sumW50->fill();
_h_dphi_BB_boost->fill(dphiBB);
_h_dR_BB_boost->fill(dRBB);
_h_min_dR_ZB_boost->fill(mindR_ZB);
_h_A_ZBB_boost->fill(AZBB);
}
// Fill Z pT (cumulative) histogram
_h_min_ZpT->fill(0);
if (pZ.pT() > 40*GeV ) {
_sumWpT->fill();
_h_min_ZpT->fill(40);
}
if (pZ.pT() > 80*GeV ) {
_sumWpT->fill();
_h_min_ZpT->fill(80);
}
if (pZ.pT() > 120*GeV ) {
_sumWpT->fill();
_h_min_ZpT->fill(120);
}
Bmom.clear();
}
/// Finalize
void finalize() {
// Normalize excluding overflow bins (d'oh)
normalize(_h_dR_BB, 0.7*crossSection()*dbl(*_sumW)/sumOfWeights(), false); // d01-x01-y01
normalize(_h_dphi_BB, 0.53*crossSection()*dbl(*_sumW)/sumOfWeights(), false); // d02-x01-y01
normalize(_h_min_dR_ZB, 0.84*crossSection()*dbl(*_sumW)/sumOfWeights(), false); // d03-x01-y01
normalize(_h_A_ZBB, 0.2*crossSection()*dbl(*_sumW)/sumOfWeights(), false); // d04-x01-y01
normalize(_h_dR_BB_boost, 0.84*crossSection()*dbl(*_sumW50)/sumOfWeights(), false); // d05-x01-y01
normalize(_h_dphi_BB_boost, 0.63*crossSection()*dbl(*_sumW50)/sumOfWeights(), false); // d06-x01-y01
normalize(_h_min_dR_ZB_boost, 1*crossSection()*dbl(*_sumW50)/sumOfWeights(), false); // d07-x01-y01
normalize(_h_A_ZBB_boost, 0.25*crossSection()*dbl(*_sumW50)/sumOfWeights(), false); // d08-x01-y01
normalize(_h_min_ZpT, 40*crossSection()*dbl(*_sumWpT)/sumOfWeights(), false); // d09-x01-y01
}
private:
/// @name Weight counters
//@{
CounterPtr _sumW, _sumW50, _sumWpT;
//@}
/// @name Histograms
//@{
Histo1DPtr _h_dphi_BB, _h_dR_BB, _h_min_dR_ZB, _h_A_ZBB;
Histo1DPtr _h_dphi_BB_boost, _h_dR_BB_boost, _h_min_dR_ZB_boost, _h_A_ZBB_boost, _h_min_ZpT;
//@}
};
RIVET_DECLARE_PLUGIN(CMS_2013_I1256943);
}
|