Rivet Analyses Reference

CMS_2015_I1370682

Differential top quark pair production cross-sections in $pp$ collisions at $\sqrt{s} = 8$ TeV
Experiment: CMS (LHC)
Inspire ID: 1370682
Status: VALIDATED
Authors:
  • Javier Fernandez
  • Jungwan John Goh
  • Efe Yazgan
  • Markus Seidel
  • James Keaveney
  • Elvire Bouvier
  • Benedikt Maier
References:
  • Eur.Phys.J. C75 (2015) 542 (the analysis)
  • CMS-PAS-TOP-15-011 (Rivet implementation)
Beams: p+ p+
Beam energies: (4000.0, 4000.0) GeV
Run details:
  • $pp$ QCD interactions at $\sqrt{s} = 8$ TeV. Data collected by CMS during the year 2012.

The reconstruction of particle-level top quarks and anti-quarks is implemented in this module. Measurements at $\sqrt{s} = 8 \text{TeV}$ are based on parton-level information in the full phase space using MADGRAPH+PYTHIA6. To match the particle-level top quark distributions to the measurements unfolded to the parton-level, a correction function to the particle-level distributions, derived using the same MADGRAPH+PYTHIA6 configuration that was used for the original measurement of the data points, is applied. Using the same MC configuration as used for the unfolding to correct back the parton-level to particle-level, the model dependence introduced in unfolding to parton-level and extrapolating the measurement to the full phase space is eliminated. See the paper for full object selection and correction details.

Source code: CMS_2015_I1370682.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#include "Rivet/Analysis.hh"
#include "Rivet/Math/LorentzTrans.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {


  namespace { //< only visible in this compilation unit

    /// @brief Pseudo top finder
    ///
    /// Find top quark in the particle level.
    /// The definition is based on the agreement at the LHC working group.
    class PseudoTop : public FinalState {
    public:
      /// @name Standard constructors and destructors.
      //@{

      /// The default constructor. May specify the minimum and maximum
      /// pseudorapidity \f$ \eta \f$ and the min \f$ p_T \f$ (in GeV).
      PseudoTop(double lepR = 0.1, double lepMinPt = 20, double lepMaxEta = 2.4,
                double jetR = 0.4, double jetMinPt = 30, double jetMaxEta = 4.7)
        : FinalState(),
          _lepR(lepR), _lepMinPt(lepMinPt), _lepMaxEta(lepMaxEta),
          _jetR(jetR), _jetMinPt(jetMinPt), _jetMaxEta(jetMaxEta)
      {
        setName("PseudoTop");
      }

      enum TTbarMode {CH_NONE=-1, CH_FULLHADRON = 0, CH_SEMILEPTON, CH_FULLLEPTON};
      enum DecayMode {CH_HADRON = 0, CH_MUON, CH_ELECTRON};

      TTbarMode mode() const {
        if (!_isValid) return CH_NONE;
        if (_mode1 == CH_HADRON && _mode2 == CH_HADRON) return CH_FULLHADRON;
        else if ( _mode1 != CH_HADRON && _mode2 != CH_HADRON) return CH_FULLLEPTON;
        else return CH_SEMILEPTON;
      }
      virtual const DecayMode& mode1() const {return _mode1;}
      virtual const DecayMode& mode2() const {return _mode2;}

      /// Clone on the heap.
      DEFAULT_RIVET_PROJ_CLONE(PseudoTop);

      //@}

    public:
      virtual const Particle& t1() const {return _t1;}
      virtual const Particle& t2() const {return _t2;}
      virtual const Particle& b1() const {return _b1;}
      virtual const Particle& b2() const {return _b2;}
      virtual const Particles& wDecays1() const {return _wDecays1;}
      virtual const Particles& wDecays2() const {return _wDecays2;}
      virtual const Jets& jets() const {return _jets;}
      virtual const Jets& bjets() const {return _bjets;}
      virtual const Jets& ljets() const {return _ljets;}

      // Apply the projection to the event
      void project(const Event& e); // override; ///< @todo Re-enable when C++11 allowed
      void cleanup(std::map<double, std::pair<size_t, size_t> >& v, const bool doCrossCleanup=false) const;
      CmpState compare(const Projection& p) const;


    private:
      const double _lepR, _lepMinPt, _lepMaxEta;
      const double _jetR, _jetMinPt, _jetMaxEta;

      //constexpr ///< @todo Re-enable when C++11 allowed
      static double _tMass; // = 172.5*GeV; ///< @todo Re-enable when C++11 allowed
      //constexpr ///< @todo Re-enable when C++11 allowed
      static double _wMass; // = 80.4*GeV; ///< @todo Re-enable when C++11 allowed

    private:
      bool _isValid;
      DecayMode _mode1, _mode2;

      Particle _t1, _t2;
      Particle _b1, _b2;
      Particles _wDecays1, _wDecays2;
      Jets _jets, _bjets, _ljets;

    };

    // More implementation below the analysis code

  }



  /// Pseudo-top analysis from CMS
  class CMS_2015_I1370682 : public Analysis {
  public:

    CMS_2015_I1370682()
      : Analysis("CMS_2015_I1370682"),
        _applyCorrection(true),
        _doShapeOnly(true)
    {    }


    void init() {
      declare(PseudoTop(0.1, 20, 2.4, 0.5, 30, 2.4), "ttbar");

      // Lepton + Jet channel
      book(_hSL_topPt         ,"d15-x01-y01"); // 1/sigma dsigma/dpt(top)
      book(_hSL_topPtTtbarSys ,"d16-x01-y01"); // 1/sigma dsigma/dpt*(top)
      book(_hSL_topY          ,"d17-x01-y01"); // 1/sigma dsigma/dy(top)
      book(_hSL_ttbarDelPhi   ,"d18-x01-y01"); // 1/sigma dsigma/ddeltaphi(t,tbar)
      book(_hSL_topPtLead     ,"d19-x01-y01"); // 1/sigma dsigma/dpt(t1)
      book(_hSL_topPtSubLead  ,"d20-x01-y01"); // 1/sigma dsigma/dpt(t2)
      book(_hSL_ttbarPt       ,"d21-x01-y01"); // 1/sigma dsigma/dpt(ttbar)
      book(_hSL_ttbarY        ,"d22-x01-y01"); // 1/sigma dsigma/dy(ttbar)
      book(_hSL_ttbarMass     ,"d23-x01-y01"); // 1/sigma dsigma/dm(ttbar)

      // Dilepton channel
      book(_hDL_topPt         ,"d24-x01-y01"); // 1/sigma dsigma/dpt(top)
      book(_hDL_topPtTtbarSys ,"d25-x01-y01"); // 1/sigma dsigma/dpt*(top)
      book(_hDL_topY          ,"d26-x01-y01"); // 1/sigma dsigma/dy(top)
      book(_hDL_ttbarDelPhi   ,"d27-x01-y01"); // 1/sigma dsigma/ddeltaphi(t,tbar)
      book(_hDL_topPtLead     ,"d28-x01-y01"); // 1/sigma dsigma/dpt(t1)
      book(_hDL_topPtSubLead  ,"d29-x01-y01"); // 1/sigma dsigma/dpt(t2)
      book(_hDL_ttbarPt       ,"d30-x01-y01"); // 1/sigma dsigma/dpt(ttbar)
      book(_hDL_ttbarY        ,"d31-x01-y01"); // 1/sigma dsigma/dy(ttbar)
      book(_hDL_ttbarMass     ,"d32-x01-y01"); // 1/sigma dsigma/dm(ttbar)

    }


    void analyze(const Event& event) {

      // Get the ttbar candidate
      const PseudoTop& ttbar = apply<PseudoTop>(event, "ttbar");
      if ( ttbar.mode() == PseudoTop::CH_NONE ) vetoEvent;

      const FourMomentum& t1P4 = ttbar.t1().momentum();
      const FourMomentum& t2P4 = ttbar.t2().momentum();
      const double pt1 = std::max(t1P4.pT(), t2P4.pT());
      const double pt2 = std::min(t1P4.pT(), t2P4.pT());
      const double dPhi = deltaPhi(t1P4, t2P4);
      const FourMomentum ttP4 = t1P4 + t2P4;
      const FourMomentum t1P4AtCM = LorentzTransform::mkFrameTransformFromBeta(ttP4.betaVec()).transform(t1P4);

      const double weight = 1.0;

      if ( ttbar.mode() == PseudoTop::CH_SEMILEPTON ) {
        const Particle lCand1 = ttbar.wDecays1()[0]; // w1 dau0 is the lepton in the PseudoTop
        if (lCand1.pT() < 33*GeV || lCand1.abseta() > 2.1) vetoEvent;
        _hSL_topPt->fill(t1P4.pT(), weight);
        _hSL_topPt->fill(t2P4.pT(), weight);
        _hSL_topPtTtbarSys->fill(t1P4AtCM.pT(), weight);
        _hSL_topY->fill(t1P4.rapidity(), weight);
        _hSL_topY->fill(t2P4.rapidity(), weight);
        _hSL_ttbarDelPhi->fill(dPhi, weight);
        _hSL_topPtLead->fill(pt1, weight);
        _hSL_topPtSubLead->fill(pt2, weight);
        _hSL_ttbarPt->fill(ttP4.pT(), weight);
        _hSL_ttbarY->fill(ttP4.rapidity(), weight);
        _hSL_ttbarMass->fill(ttP4.mass(), weight);
      }
      else if ( ttbar.mode() == PseudoTop::CH_FULLLEPTON ) {
        const Particle lCand1 = ttbar.wDecays1()[0]; // dau0 are the lepton in the PseudoTop
        const Particle lCand2 = ttbar.wDecays2()[0]; // dau0 are the lepton in the PseudoTop
        if (lCand1.pT() < 20*GeV || lCand1.abseta() > 2.4) vetoEvent;
        if (lCand2.pT() < 20*GeV || lCand2.abseta() > 2.4) vetoEvent;
        _hDL_topPt->fill(t1P4.pT(), weight);
        _hDL_topPt->fill(t2P4.pT(), weight);
        _hDL_topPtTtbarSys->fill(t1P4AtCM.pT(), weight);
        _hDL_topY->fill(t1P4.rapidity(), weight);
        _hDL_topY->fill(t2P4.rapidity(), weight);
        _hDL_ttbarDelPhi->fill(dPhi, weight);
        _hDL_topPtLead->fill(pt1, weight);
        _hDL_topPtSubLead->fill(pt2, weight);
        _hDL_ttbarPt->fill(ttP4.pT(), weight);
        _hDL_ttbarY->fill(ttP4.rapidity(), weight);
        _hDL_ttbarMass->fill(ttP4.mass(), weight);
      }

    }


    void finalize() {
      if ( _applyCorrection ) {
        // Correction functions for TOP-12-028 paper, (parton bin height)/(pseudotop bin height)
        const double ch15[] = { 5.473609, 4.941048, 4.173346, 3.391191, 2.785644, 2.371346, 2.194161, 2.197167, };
        const double ch16[] = { 5.470905, 4.948201, 4.081982, 3.225532, 2.617519, 2.239217, 2.127878, 2.185918, };
        const double ch17[] = { 10.003667, 4.546519, 3.828115, 3.601018, 3.522194, 3.524694, 3.600951, 3.808553, 4.531891, 9.995370, };
        const double ch18[] = { 4.406683, 4.054041, 3.885393, 4.213646, };
        const double ch19[] = { 6.182537, 5.257703, 4.422280, 3.568402, 2.889408, 2.415878, 2.189974, 2.173210, };
        const double ch20[] = { 5.199874, 4.693318, 3.902882, 3.143785, 2.607877, 2.280189, 2.204124, 2.260829, };
        const double ch21[] = { 6.053523, 3.777506, 3.562251, 3.601356, 3.569347, 3.410472, };
        const double ch22[] = { 11.932351, 4.803773, 3.782709, 3.390775, 3.226806, 3.218982, 3.382678, 3.773653, 4.788191, 11.905338, };
        const double ch23[] = { 7.145255, 5.637595, 4.049882, 3.025917, 2.326430, 1.773824, 1.235329, };

        const double ch24[] = { 2.268193, 2.372063, 2.323975, 2.034655, 1.736793, };
        const double ch25[] = { 2.231852, 2.383086, 2.341894, 2.031318, 1.729672, 1.486993, };
        const double ch26[] = { 3.993526, 2.308249, 2.075136, 2.038297, 2.036302, 2.078270, 2.295817, 4.017713, };
        const double ch27[] = { 2.205978, 2.175010, 2.215376, 2.473144, };
        const double ch28[] = { 2.321077, 2.371895, 2.338871, 2.057821, 1.755382, };
        const double ch29[] = { 2.222707, 2.372591, 2.301688, 1.991162, 1.695343, };
        const double ch30[] = { 2.599677, 2.026855, 2.138620, 2.229553, };
        const double ch31[] = { 5.791779, 2.636219, 2.103642, 1.967198, 1.962168, 2.096514, 2.641189, 5.780828, };
        const double ch32[] = { 2.006685, 2.545525, 2.477745, 2.335747, 2.194226, 2.076500, };

        applyCorrection(_hSL_topPt, ch15);
        applyCorrection(_hSL_topPtTtbarSys, ch16);
        applyCorrection(_hSL_topY, ch17);
        applyCorrection(_hSL_ttbarDelPhi, ch18);
        applyCorrection(_hSL_topPtLead, ch19);
        applyCorrection(_hSL_topPtSubLead, ch20);
        applyCorrection(_hSL_ttbarPt, ch21);
        applyCorrection(_hSL_ttbarY, ch22);
        applyCorrection(_hSL_ttbarMass, ch23);

        applyCorrection(_hDL_topPt, ch24);
        applyCorrection(_hDL_topPtTtbarSys, ch25);
        applyCorrection(_hDL_topY, ch26);
        applyCorrection(_hDL_ttbarDelPhi, ch27);
        applyCorrection(_hDL_topPtLead, ch28);
        applyCorrection(_hDL_topPtSubLead, ch29);
        applyCorrection(_hDL_ttbarPt, ch30);
        applyCorrection(_hDL_ttbarY, ch31);
        applyCorrection(_hDL_ttbarMass, ch32);
      }

      if ( _doShapeOnly ) {
        normalize(_hSL_topPt        );
        normalize(_hSL_topPtTtbarSys);
        normalize(_hSL_topY         );
        normalize(_hSL_ttbarDelPhi  );
        normalize(_hSL_topPtLead    );
        normalize(_hSL_topPtSubLead );
        normalize(_hSL_ttbarPt      );
        normalize(_hSL_ttbarY       );
        normalize(_hSL_ttbarMass    );

        normalize(_hDL_topPt        );
        normalize(_hDL_topPtTtbarSys);
        normalize(_hDL_topY         );
        normalize(_hDL_ttbarDelPhi  );
        normalize(_hDL_topPtLead    );
        normalize(_hDL_topPtSubLead );
        normalize(_hDL_ttbarPt      );
        normalize(_hDL_ttbarY       );
        normalize(_hDL_ttbarMass    );
      }
      else {
        const double s = 1./sumOfWeights();
        scale(_hSL_topPt        , s);
        scale(_hSL_topPtTtbarSys, s);
        scale(_hSL_topY         , s);
        scale(_hSL_ttbarDelPhi  , s);
        scale(_hSL_topPtLead    , s);
        scale(_hSL_topPtSubLead , s);
        scale(_hSL_ttbarPt      , s);
        scale(_hSL_ttbarY       , s);
        scale(_hSL_ttbarMass    , s);
        scale(_hDL_topPt        , s);
        scale(_hDL_topPtTtbarSys, s);
        scale(_hDL_topY         , s);
        scale(_hDL_ttbarDelPhi  , s);
        scale(_hDL_topPtLead    , s);
        scale(_hDL_topPtSubLead , s);
        scale(_hDL_ttbarPt      , s);
        scale(_hDL_ttbarY       , s);
        scale(_hDL_ttbarMass    , s);
      }

    }


    void applyCorrection(Histo1DPtr h, const double* cf) {
      vector<YODA::HistoBin1D>& bins = h->bins();
      for (size_t i=0, n=bins.size(); i<n; ++i ) {
        const double s = cf[i];
        YODA::HistoBin1D& bin = bins[i];
        bin.scaleW(s);
      }
    }


  private:

    const bool _applyCorrection, _doShapeOnly;
    Histo1DPtr _hSL_topPt, _hSL_topPtTtbarSys, _hSL_topY, _hSL_ttbarDelPhi, _hSL_topPtLead,
      _hSL_topPtSubLead, _hSL_ttbarPt, _hSL_ttbarY, _hSL_ttbarMass;
    Histo1DPtr _hDL_topPt, _hDL_topPtTtbarSys, _hDL_topY, _hDL_ttbarDelPhi, _hDL_topPtLead,
      _hDL_topPtSubLead, _hDL_ttbarPt, _hDL_ttbarY, _hDL_ttbarMass;

  };



  RIVET_DECLARE_PLUGIN(CMS_2015_I1370682);


  ///////////////

  // More PseudoTop implementation
  namespace {


    double PseudoTop::_tMass = 172.5*GeV;
    double PseudoTop::_wMass = 80.4*GeV;

    CmpState PseudoTop::compare(const Projection& p) const {
      const PCmp fscmp = mkNamedPCmp(p, "FS");
      if (fscmp != CmpState::EQ) return fscmp;
 
      const PseudoTop& other = dynamic_cast<const PseudoTop&>(p);
      CmpState cs_lepR = cmp(_lepR, other._lepR);
      if (cs_lepR != CmpState::EQ) return cs_lepR;

      CmpState cs_jetR = cmp(_jetR, other._jetR);
      if (cs_jetR != CmpState::EQ) return cs_jetR;

      CmpState cs_lepMinPt = cmp(_lepMinPt, other._lepMinPt);
      if (cs_lepMinPt != CmpState::EQ) return cs_lepMinPt;

      CmpState cs_jetMinPt = cmp(_jetMinPt, other._jetMinPt);
      if (cs_jetMinPt != CmpState::EQ) return cs_jetMinPt;

      CmpState cs_lepMaxEta = cmp(_lepMaxEta, other._lepMaxEta);
      if (cs_lepMaxEta != CmpState::EQ) return cs_lepMaxEta;

      CmpState cs_jetMaxEta = cmp(_jetMaxEta, other._jetMaxEta);
      return cs_jetMaxEta;
    }

    void PseudoTop::cleanup(map<double, pair<size_t, size_t> >& v, const bool doCrossCleanup) const {
      vector<map<double, pair<size_t, size_t> >::iterator> toErase;
      set<size_t> usedLeg1, usedLeg2;
      if ( !doCrossCleanup ) {
        /// @todo Reinstate when C++11 allowed: for (auto key = v.begin(); key != v.end(); ++key) {
        for (map<double, pair<size_t, size_t> >::iterator key = v.begin(); key != v.end(); ++key) {
          const size_t leg1 = key->second.first;
          const size_t leg2 = key->second.second;
          if (usedLeg1.find(leg1) == usedLeg1.end() and
              usedLeg2.find(leg2) == usedLeg2.end()) {
            usedLeg1.insert(leg1);
            usedLeg2.insert(leg2);
          } else {
            toErase.push_back(key);
          }
        }
      }
      else {
        /// @todo Reinstate when C++11 allowed: for (auto key = v.begin(); key != v.end(); ++key) {
        for (map<double, pair<size_t, size_t> >::iterator key = v.begin(); key != v.end(); ++key) {
          const size_t leg1 = key->second.first;
          const size_t leg2 = key->second.second;
          if (usedLeg1.find(leg1) == usedLeg1.end() and
              usedLeg1.find(leg2) == usedLeg1.end()) {
            usedLeg1.insert(leg1);
            usedLeg1.insert(leg2);
          } else {
            toErase.push_back(key);
          }
        }
      }
      /// @todo Reinstate when C++11 allowed:  for (auto& key : toErase) v.erase(key);
      for (size_t i = 0; i < toErase.size(); ++i) v.erase(toErase[i]);
    }


    void PseudoTop::project(const Event& e) {
      // Leptons : do the lepton clustering anti-kt R=0.1 using stable photons and leptons not from hadron decay
      // Neutrinos : neutrinos not from hadron decay
      // MET : vector sum of all invisible particles in x-y plane
      // Jets : anti-kt R=0.4 using all particles excluding neutrinos and particles used in lepton clustering
      //        add ghost B hadrons during the jet clustering to identify B jets.

      // W->lv : dressed lepton and neutrino pairs
      // W->jj : light flavored dijet
      // W candidate : select lv or jj pairs which minimise |mW1-80.4|+|mW2-80.4|
      //               lepton-neutrino pair will be selected with higher priority

      // t->Wb : W candidate + b jet
      // t candidate : select Wb pairs which minimise |mtop1-172.5|+|mtop2-172.5|

      _isValid = false;
      _wDecays1.clear();
      _wDecays2.clear();
      _jets.clear();
      _bjets.clear();
      _ljets.clear();
      _mode1 = _mode2 = CH_HADRON;

      // Collect final state particles
      Particles pForLep, pForJet;
      Particles neutrinos; // Prompt neutrinos
      /// @todo Avoid this unsafe jump into HepMC -- all this can be done properly via VisibleFS and HeavyHadrons projections
      for (ConstGenParticlePtr p : HepMCUtils::particles(e.genEvent())) {//
        const int status = p->status();
        const int pid = p->pdg_id();
        if (status == 1) {
          Particle rp = *p;
          if (!PID::isHadron(pid) && !rp.fromHadron()) {
            // Collect particles not from hadron decay
            if (rp.isNeutrino()) {
              // Prompt neutrinos are kept in separate collection
              neutrinos.push_back(rp);
            } else if (pid == PID::PHOTON || rp.isLepton()) {
              // Leptons and photons for the dressing
              pForLep.push_back(rp);
            }
          } else if (!rp.isNeutrino()) {
            // Use all particles from hadron decay
            pForJet.push_back(rp);
          }
        } else if (PID::isHadron(pid) && PID::hasBottom(pid)) {
          // NOTE: Consider B hadrons with pT > 5GeV - not in CMS proposal
          //if ( p->momentum().perp() < 5 ) continue;

          // Do unstable particles, to be used in the ghost B clustering
          // Use last B hadrons only
          bool isLast = true;
          for (ConstGenParticlePtr pp : HepMCUtils::particles(p->end_vertex(), Relatives::CHILDREN)) {
            if (PID::hasBottom(pp->pdg_id())) {
              isLast = false;
              break;
            }
          }
          if (!isLast) continue;

          // Rescale momentum by 10^-20
          /// @todo Why the factor of 1/rho() as well?
          //Particle ghost(pdgId, FourMomentum(p->momentum())*1e-20/p->momentum().rho());
          Particle ghost(pid, FourMomentum(p->momentum()));
          ghost.setMomentum(ghost.momentum()*1.e-20 / ghost.momentum().rho());
          pForJet.push_back(ghost);
        }
      }

      // Start object building from trivial thing - prompt neutrinos
      sortByPt(neutrinos);

      // Proceed to lepton dressing
      FastJets fjLep(FinalState(), FastJets::ANTIKT, _lepR);
      fjLep.calc(pForLep);

      Jets leptons;
      vector<int> leptonsId;
      set<int> dressedIdxs;
      for (const Jet& lep : fjLep.jetsByPt(_lepMinPt)) {
        if (lep.abseta() > _lepMaxEta) continue;
        double leadingPt = -1;
        int leptonId = 0;
        for (const Particle& p : lep.particles()) {
          /// @warning Barcodes aren't future-proof in HepMC
          dressedIdxs.insert(HepMCUtils::uniqueId(p.genParticle()));
          if (p.isLepton() && p.pT() > leadingPt) {
            leadingPt = p.pT();
            leptonId = p.pid();
          }
        }
        if (leptonId == 0) continue;
        leptons.push_back(lep);
        leptonsId.push_back(leptonId);
      }

      // Re-use particles not used in lepton dressing
      for (const Particle& rp : pForLep) {
        const int barcode = HepMCUtils::uniqueId(rp.genParticle());
        // Skip if the particle is used in dressing
        if (dressedIdxs.find(barcode) != dressedIdxs.end()) continue;
        // Put back to be used in jet clustering
        pForJet.push_back(rp);
      }

      // Then do the jet clustering
      FastJets fjJet(FinalState(), FastJets::ANTIKT, _jetR);
      //fjJet.useInvisibles(); // NOTE: CMS proposal to remove neutrinos (AB: wouldn't work anyway, since they were excluded from clustering inputs)
      fjJet.calc(pForJet);
      for (const Jet& jet : fjJet.jetsByPt(_jetMinPt)) {
        if (jet.abseta() > _jetMaxEta) continue;
        _jets.push_back(jet);
        bool isBJet = false;
        for (const Particle& rp : jet.particles()) {
          if (PID::hasBottom(rp.pid())) {
            isBJet = true;
            break;
          }
        }
        if ( isBJet ) _bjets.push_back(jet);
        else _ljets.push_back(jet);
      }

      // Every building blocks are ready. Continue to pseudo-W and pseudo-top combination

      if (_bjets.size() < 2) return; // Ignore single top for now
      map<double, pair<size_t, size_t> > wLepCandIdxs;
      map<double, pair<size_t, size_t> > wHadCandIdxs;

      // Collect leptonic-decaying W's
      for (size_t iLep = 0, nLep = leptons.size(); iLep < nLep; ++iLep) {
        const Jet& lep = leptons.at(iLep);
        for (size_t iNu = 0, nNu = neutrinos.size(); iNu < nNu; ++iNu) {
          const Particle& nu = neutrinos.at(iNu);
          const double m = (lep.momentum()+nu.momentum()).mass();
          const double dm = std::abs(m-_wMass);
          wLepCandIdxs[dm] = make_pair(iLep, iNu);
        }
      }

      // Continue to hadronic decaying W's
      for (size_t i = 0, nLjet = _ljets.size(); i < nLjet; ++i) {
        const Jet& ljet1 = _ljets[i];
        for (size_t j = i+1; j < nLjet; ++j) {
          const Jet& ljet2 = _ljets[j];
          const double m = (ljet1.momentum()+ljet2.momentum()).mass();
          const double dm = std::abs(m-_wMass);
          wHadCandIdxs[dm] = make_pair(i, j);
        }
      }

      // Cleanup W candidate, choose pairs with minimum dm if they share decay products
      cleanup(wLepCandIdxs);
      cleanup(wHadCandIdxs, true);
      const size_t nWLepCand = wLepCandIdxs.size();
      const size_t nWHadCand = wHadCandIdxs.size();

      if (nWLepCand + nWHadCand < 2) return; // We skip single top

      int w1Q = 1, w2Q = -1;
      int w1dau1Id = 1, w2dau1Id = -1;
      FourMomentum w1dau1LVec, w1dau2LVec;
      FourMomentum w2dau1LVec, w2dau2LVec;
      if (nWLepCand == 0) { // Full hadronic case
        const pair<size_t, size_t>& idPair1 = wHadCandIdxs.begin()->second;
        const pair<size_t, size_t>& idPair2 = (++wHadCandIdxs.begin())->second;  ///< @todo Reinstate std::next
        const Jet& w1dau1 = _ljets[idPair1.first];
        const Jet& w1dau2 = _ljets[idPair1.second];
        const Jet& w2dau1 = _ljets[idPair2.first];
        const Jet& w2dau2 = _ljets[idPair2.second];
        w1dau1LVec = w1dau1.momentum();
        w1dau2LVec = w1dau2.momentum();
        w2dau1LVec = w2dau1.momentum();
        w2dau2LVec = w2dau2.momentum();
      } else if (nWLepCand == 1) { // Semi-leptonic case
        const pair<size_t, size_t>& idPair1 = wLepCandIdxs.begin()->second;
        const pair<size_t, size_t>& idPair2 = wHadCandIdxs.begin()->second;
        const Jet& w1dau1 = leptons[idPair1.first];
        const Particle& w1dau2 = neutrinos[idPair1.second];
        const Jet& w2dau1 = _ljets[idPair2.first];
        const Jet& w2dau2 = _ljets[idPair2.second];
        w1dau1LVec = w1dau1.momentum();
        w1dau2LVec = w1dau2.momentum();
        w2dau1LVec = w2dau1.momentum();
        w2dau2LVec = w2dau2.momentum();
        w1dau1Id = leptonsId[idPair1.first];
        w1Q = w1dau1Id > 0 ? -1 : 1;
        w2Q = -w1Q;
        switch (w1dau1Id) {
        case 13: case -13: _mode1 = CH_MUON; break;
        case 11: case -11: _mode1 = CH_ELECTRON; break;
        }
      } else { // Full leptonic case
        const pair<size_t, size_t>& idPair1 = wLepCandIdxs.begin()->second;
        const pair<size_t, size_t>& idPair2 = (++wLepCandIdxs.begin())->second;  ///< @todo Reinstate std::next
        const Jet& w1dau1 = leptons[idPair1.first];
        const Particle& w1dau2 = neutrinos[idPair1.second];
        const Jet& w2dau1 = leptons[idPair2.first];
        const Particle& w2dau2 = neutrinos[idPair2.second];
        w1dau1LVec = w1dau1.momentum();
        w1dau2LVec = w1dau2.momentum();
        w2dau1LVec = w2dau1.momentum();
        w2dau2LVec = w2dau2.momentum();
        w1dau1Id = leptonsId[idPair1.first];
        w2dau1Id = leptonsId[idPair2.first];
        w1Q = w1dau1Id > 0 ? -1 : 1;
        w2Q = w2dau1Id > 0 ? -1 : 1;
        switch (w1dau1Id) {
        case 13: case -13: _mode1 = CH_MUON; break;
        case 11: case -11: _mode1 = CH_ELECTRON; break;
        }
        switch (w2dau1Id) {
        case 13: case -13: _mode2 = CH_MUON; break;
        case 11: case -11: _mode2 = CH_ELECTRON; break;
        }
      }
      const FourMomentum w1LVec = w1dau1LVec+w1dau2LVec;
      const FourMomentum w2LVec = w2dau1LVec+w2dau2LVec;

      // Combine b jets
      double sumDm = 1e9;
      FourMomentum b1LVec, b2LVec;
      for (size_t i = 0, n = _bjets.size(); i < n; ++i) {
        const Jet& bjet1 = _bjets[i];
        const double mtop1 = (w1LVec+bjet1.momentum()).mass();
        const double dmtop1 = std::abs(mtop1-_tMass);
        for (size_t j=0; j<n; ++j) {
          if (i == j) continue;
          const Jet& bjet2 = _bjets[j];
          const double mtop2 = (w2LVec+bjet2.momentum()).mass();
          const double dmtop2 = std::abs(mtop2-_tMass);

          if (sumDm <= dmtop1+dmtop2) continue;

          sumDm = dmtop1+dmtop2;
          b1LVec = bjet1.momentum();
          b2LVec = bjet2.momentum();
        }
      }
      if (sumDm >= 1e9) return; // Failed to make top, but this should not happen.

      const FourMomentum t1LVec = w1LVec + b1LVec;
      const FourMomentum t2LVec = w2LVec + b2LVec;

      // Put all of them into candidate collection
      _t1 = Particle(w1Q*6, t1LVec);
      _b1 = Particle(w1Q*5, b1LVec);
      _wDecays1.push_back(Particle(w1dau1Id, w1dau1LVec));
      _wDecays1.push_back(Particle(-w1dau1Id+w1Q, w1dau2LVec));

      _t2 = Particle(w2Q*6, t2LVec);
      _b2 = Particle(w2Q*5, b2LVec);
      _wDecays2.push_back(Particle(w2dau1Id, w2dau1LVec));
      _wDecays2.push_back(Particle(-w2dau1Id+w2Q, w2dau2LVec));

      _isValid = true;
    }

  }


}