1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/PromptFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/SmearedParticles.hh"
#include "Rivet/Projections/SmearedJets.hh"
#include "Rivet/Projections/SmearedMET.hh"
#include "Rivet/Tools/Cutflow.hh"
namespace Rivet {
/// CMS 2016 0-lepton SUSY search, from 13/fb PAS note
class CMS_2016_PAS_SUS_16_14 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2016_PAS_SUS_16_14);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
FinalState calofs(Cuts::abseta < 5.0);
FastJets fj(calofs, FastJets::ANTIKT, 0.4);
declare(fj, "TruthJets");
declare(SmearedJets(fj, JET_SMEAR_CMS_RUN2, [](const Jet& j) {
if (j.abseta() > 2.5) return 0.;
return j.bTagged() ? 0.55 : j.cTagged() ? 0.12 : 0.016; }), "Jets");
FinalState es(Cuts::abspid == PID::ELECTRON && Cuts::abseta < 2.5);
declare(es, "TruthElectrons");
declare(SmearedParticles(es, ELECTRON_EFF_CMS_RUN2, ELECTRON_SMEAR_CMS_RUN2), "Electrons");
FinalState mus(Cuts::abspid == PID::MUON && Cuts::abseta < 2.4);
declare(mus, "TruthMuons");
declare(SmearedParticles(mus, MUON_EFF_CMS_RUN2, MUON_SMEAR_CMS_RUN2), "Muons");
FinalState isofs(Cuts::abseta < 3.0 && Cuts::abspid != PID::ELECTRON && Cuts::abspid != PID::MUON);
declare(isofs, "IsoFS");
FinalState cfs(Cuts::abseta < 2.5 && Cuts::abscharge != 0);
declare(cfs, "TruthTracks");
declare(SmearedParticles(cfs, TRK_EFF_CMS_RUN2), "Tracks");
// Book histograms/counters
_h_srcounts.resize(160);
for (size_t ij = 0; ij < 4; ++ij) {
for (size_t ib = 0; ib < 4; ++ib) {
for (size_t ih = 0; ih < 10; ++ih) {
const size_t i = 40*ij + 10*ib + ih;
book(_h_srcounts[i], toString(2*ij+3) + "j-" + toString(ib) + "b-" + toString(ih));
}
}
}
_h_srcountsagg.resize(12);
for (size_t ia = 0; ia < 12; ++ia) {
book(_h_srcountsagg[ia], "agg-" + toString(ia));
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Get jets and require Nj >= 3
const Jets jets24 = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 30*GeV && Cuts::abseta < 2.4);
if (jets24.size() < 3) vetoEvent;
// HT cut
vector<double> jetpts24; transform(jets24, jetpts24, Kin::pT);
const double ht = sum(jetpts24, 0.0);
if (ht < 300*GeV) vetoEvent;
// HTmiss cut
const Jets jets50 = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 30*GeV && Cuts::abseta < 5.0);
const FourMomentum htmissvec = -sum(jets24, mom, FourMomentum());
const double htmiss = htmissvec.pT();
if (htmissvec.pT() < 300*GeV) vetoEvent;
// Get baseline electrons & muons
Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(Cuts::pT > 10*GeV);
Particles muons = apply<ParticleFinder>(event, "Muons").particles(Cuts::pT > 10*GeV);
// Electron/muon isolation
const Particles calofs = apply<ParticleFinder>(event, "IsoFS").particles();
ifilter_discard(elecs, [&](const Particle& e) {
const double R = max(0.05, min(0.2, 10*GeV/e.pT()));
double ptsum = -e.pT();
for (const Particle& p : calofs)
if (deltaR(p,e) < R) ptsum += p.pT();
return ptsum / e.pT() > 0.1;
});
ifilter_discard(muons, [&](const Particle& m) {
const double R = max(0.05, min(0.2, 10*GeV/m.pT()));
double ptsum = -m.pT();
for (const Particle& p : calofs)
if (deltaR(p,m) < R) ptsum += p.pT();
return ptsum / m.pT() > 0.2;
});
// Veto the event if there are any remaining baseline leptons
if (!elecs.empty()) vetoEvent;
if (!muons.empty()) vetoEvent;
// Get isolated tracks
Particles trks25 = apply<ParticleFinder>(event, "Tracks").particles();
ifilter_discard(trks25, [&](const Particle& t) {
double ptsum = -t.pT();
for (const Particle& p : trks25)
if (deltaR(p,t) < 0.3) ptsum += p.pT();
return ptsum/t.pT() > ((t.abspid() == PID::ELECTRON || t.abspid() == PID::MUON) ? 0.2 : 0.1);
});
const Particles trks = filter_select(trks25, Cuts::abseta < 2.4);
// Isolated track pT, pTmiss and mT cut
// mT^2 = m1^2 + m2^2 + 2(ET1 ET2 - pT1 . pT2))
// => mT0^2 = 2(ET1 |pT2| - pT1 . pT2)) for m1, m2 -> 0
FourMomentum ptmissvec = htmissvec; ///< @todo Can we do better? No e,mu left...
const double ptmiss = ptmissvec.pT();
for (const Particle& t : trks) {
const double ptcut = (t.abspid() == PID::ELECTRON || t.abspid() == PID::MUON) ? 5*GeV : 10*GeV;
const double mT = sqrt( t.mass2() + 2*(t.Et()*ptmiss - t.pT()*ptmiss*cos(deltaPhi(t,ptmissvec))) );
if (mT < 100*GeV && t.pT() < ptcut) vetoEvent;
}
// Lead jets isolation from Htmiss
if (deltaPhi(htmissvec, jets24[0]) < 0.5) vetoEvent;
if (deltaPhi(htmissvec, jets24[1]) < 0.5) vetoEvent;
if (deltaPhi(htmissvec, jets24[2]) < 0.3) vetoEvent;
if (jets24.size() >= 4 && deltaPhi(htmissvec, jets24[3]) < 0.3) vetoEvent;
// Count jet and b-jet multiplicities
const size_t nj = jets24.size();
size_t nbj = 0;
for (const Jet& j : jets24)
if (j.bTagged()) nbj += 1;
////////
// Fill the aggregate signal regions first
if (nj >= 3 && nbj == 0 && ht > 500*GeV && htmiss > 500*GeV) _h_srcountsagg[ 0]->fill(1.0);
if (nj >= 3 && nbj == 0 && ht > 1500*GeV && htmiss > 750*GeV) _h_srcountsagg[ 1]->fill(1.0);
if (nj >= 5 && nbj == 0 && ht > 500*GeV && htmiss > 500*GeV) _h_srcountsagg[ 2]->fill(1.0);
if (nj >= 5 && nbj == 0 && ht > 1500*GeV && htmiss > 750*GeV) _h_srcountsagg[ 3]->fill(1.0);
if (nj >= 9 && nbj == 0 && ht > 1500*GeV && htmiss > 750*GeV) _h_srcountsagg[ 4]->fill(1.0);
if (nj >= 3 && nbj >= 2 && ht > 500*GeV && htmiss > 500*GeV) _h_srcountsagg[ 5]->fill(1.0);
if (nj >= 3 && nbj >= 1 && ht > 750*GeV && htmiss > 750*GeV) _h_srcountsagg[ 6]->fill(1.0);
if (nj >= 5 && nbj >= 3 && ht > 500*GeV && htmiss > 500*GeV) _h_srcountsagg[ 7]->fill(1.0);
if (nj >= 5 && nbj >= 2 && ht > 1500*GeV && htmiss > 750*GeV) _h_srcountsagg[ 8]->fill(1.0);
if (nj >= 9 && nbj >= 3 && ht > 750*GeV && htmiss > 750*GeV) _h_srcountsagg[ 9]->fill(1.0);
if (nj >= 7 && nbj >= 1 && ht > 300*GeV && htmiss > 300*GeV) _h_srcountsagg[10]->fill(1.0);
if (nj >= 5 && nbj >= 1 && ht > 750*GeV && htmiss > 750*GeV) _h_srcountsagg[11]->fill(1.0);
// Nj bin and Nbj bins
static const vector<double> njedges = {3., 5., 7., 9.};
const size_t inj = binIndex(nj, njedges, true);
static const vector<double> njbedges = {0., 1., 2., 3.};
const size_t inbj = binIndex(nbj, njbedges, true);
// HTmiss vs HT 2D bin
int iht = 0;
if (htmiss < 350*GeV) {
iht = ht < 500 ? 1 : ht < 1000 ? 2 : 3;
} else if (htmiss < 500*GeV && ht > 350*GeV) {
iht = ht < 500 ? 4 : ht < 1000 ? 5 : 6;
} else if (htmiss < 750*GeV && ht > 500*GeV) {
iht = ht < 1000 ? 7 : 8;
} else if (ht > 750*GeV) {
iht = ht < 1500 ? 9 : 10;
}
if (iht == 0) vetoEvent;
iht -= 1; //< change from the paper's indexing scheme to C++ zero-indexed
// Total bin number
const size_t ibin = 40*inj + 10*inbj + (size_t)iht;
// Fill SR counter
_h_srcounts[ibin]->fill(1.0);
}
/// Normalise counters after the run
void finalize() {
const double sf = 12.9*crossSection()/femtobarn/sumOfWeights();
scale(_h_srcounts, sf);
scale(_h_srcountsagg, sf);
}
/// @}
private:
/// @name Histograms
/// @{
vector<CounterPtr> _h_srcounts, _h_srcountsagg;
/// @}
};
RIVET_DECLARE_PLUGIN(CMS_2016_PAS_SUS_16_14);
}
|