1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/MissingMomentum.hh"
#include "Rivet/Projections/SmearedParticles.hh"
#include "Rivet/Projections/SmearedJets.hh"
#include "Rivet/Projections/SmearedMET.hh"
#include "Rivet/Tools/Cutflow.hh"
#include <tuple>
namespace Rivet {
/// CMS search for SUSY with multijet + MET signatures in 36/fb of 13 TeV pp data
class CMS_2017_I1594909 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2017_I1594909);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
VisibleFinalState pfall;
declare(pfall, "PFAll");
ChargedFinalState pfchg(Cuts::abseta < 2.5);
declare(pfchg, "PFChg");
FastJets jets(FinalState(Cuts::abseta < 4.9), FastJets::ANTIKT, 0.4);
SmearedJets recojets(jets, JET_SMEAR_CMS_RUN2, [](const Jet& j){ return j.bTagged() ? 0.55 : j.cTagged() ? 0.12 : 0.016; });
declare(recojets, "Jets");
FinalState electrons(Cuts::abspid == PID::ELECTRON && Cuts::abseta < 2.5);
SmearedParticles recoelectrons(electrons, ELECTRON_EFF_CMS_RUN2);
declare(recoelectrons, "Electrons");
FinalState muons(Cuts::abspid == PID::MUON && Cuts::abseta < 2.4);
SmearedParticles recomuons(muons, MUON_EFF_CMS_RUN2);
declare(recomuons, "Muons");
VisibleFinalState calofs(Cuts::abseta < 4.9 && Cuts::abspid != PID::MUON);
MissingMomentum met(calofs);
SmearedMET recomet(met, MET_SMEAR_CMS_RUN2);
declare(recomet, "MET");
// Book counters, into a map of 3 indices since the global index is not obvious to calculate
size_t i = 0;
for (int j = 1; j <= 5; ++j) {
for (int b = 1; b <= 4; ++b) {
if (j == 1 && b == 4) continue;
for (int k = 1; k <= 10; ++k) {
if (j > 3 && (k == 1 || k == 4)) continue;
stringstream s; s << "count_" << (i+1); // << "_" << j << b << k;
book(_counts[std::make_tuple(j,b,k)], s.str());
i += 1;
}
}
}
MSG_DEBUG("Booked " << i << " signal regions (should be 174)");
// Aggregate SR counters
for (size_t i = 0; i < 12; ++i)
book(_counts_agg[i], "count_agg_" + toString(i+1));
// Book cut-flow
_flow = Cutflow("Presel", {"Njet>=2", "HT>300", "HTmiss>300",
"Nmuon=0", "Nmuisotrk=0", "Nelec=0", "Nelisotrk=0", "Nhadisotrk=0",
"dPhi_miss,j1>0.5", "dPhi_miss,j2>0.5", "dPhi_miss,j3>0.3", "dPhi_miss,j4>0.3"
});
}
/// Perform the per-event analysis
void analyze(const Event& event) {
_flow.fillinit();
// Find leptons and isolation particles
const Particles elecs = apply<ParticleFinder>(event, "Electrons").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
const Particles pfall = apply<ParticleFinder>(event, "PFAll").particlesByPt();
const Particles pfiso = filter_select(pfall, [](const Particle& p){ return p.isHadron() || p.pid() == PID::PHOTON; });
// Find isolated leptons
const Particles isoleps = filter_select(elecs+mus, [&](const Particle& l){
const double dR = l.pT() < 50*GeV ? 0.2 : l.pT() < 200*GeV ? 10*GeV/l.pT() : 0.05;
const double sumpt = sum(filter_select(pfiso, deltaRLess(l, dR)), Kin::pT, 0.0);
return sumpt/l.pT() < (l.abspid() == PID::ELECTRON ? 0.1 : 0.2); //< different I criteria for e and mu
});
// Find other isolated tracks
const Particles pfchg = apply<ParticleFinder>(event, "PFChg").particlesByPt();
const Particles isochgs = filter_select(pfchg, [&](const Particle& t){
if (t.abseta() > 2.4) return false;
if (any(isoleps, deltaRLess(t, 0.01))) return false; //< don't count isolated leptons here
const double sumpt = sum(filter_select(pfchg, deltaRLess(t, 0.3)), Kin::pT, -t.pT());
return sumpt/t.pT() < ((t.abspid() == PID::ELECTRON || t.abspid() == PID::MUON) ? 0.2 : 0.1);
});
// Find and isolate jets
const Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 30*GeV);
const Jets cjets = filter_select(jets, Cuts::abseta < 2.4);
const Jets isojets = cjets; //discardIfAnyDeltaRLess(cjets, elecs+mus, 0.4);
const int njets = isojets.size();
const Jets isobjets = filter_select(isojets, hasBTag());
const int nbjets = isobjets.size();
MSG_DEBUG("Njets = " << jets.size() << ", Nisojets = " << njets << ", Nbjets = " << nbjets);
// Calculate HT, HTmiss, and pTmiss quantities
const double ht = sum(jets, Kin::pT, 0.0);
const Vector3 vhtmiss = -sum(jets, pTvec, Vector3());
const double htmiss = vhtmiss.perp();
const Vector3& vptmiss = -apply<SmearedMET>(event, "MET").vectorEt();
const double ptmiss = vptmiss.perp();
MSG_DEBUG("HT = " << ht/GeV << " GeV, HTmiss = " << htmiss/GeV << " GeV");
/////////////////////////////////////
// Event selection
// Njet cut
if (njets < 2) vetoEvent;
_flow.fill(1);
// HT cut
if (ht < 300*GeV) vetoEvent;
_flow.fill(2);
// HTmiss cut
if (htmiss < 300*GeV) vetoEvent;
_flow.fill(3);
// Isolated leptons cut
if (!filter_select(isoleps, Cuts::pT > 10*GeV).empty()) vetoEvent;
// Isolated tracks cut
for (const Particle& t : isochgs) {
const double mT = sqrt(2*t.pT()*ptmiss * (1 - cos(deltaPhi(t, vptmiss))) );
if (mT < 100*GeV) continue;
const double pTmax = (t.abspid() == PID::ELECTRON || t.abspid() == PID::MUON) ? 5*GeV : 10*GeV;
if (t.pT() > pTmax) vetoEvent;
}
//
// // Inefficiently separated version of isolation cuts for detailed cutflow debugging
// // Muon cut
// if (!filter_select(isoleps, Cuts::pT > 10*GeV && Cuts::abspid == PID::MUON).empty()) vetoEvent;
// _flow.fill(4);
// // Muon isotrk cut
// for (const Particle& t : filter_select(isochgs, Cuts::abspid == PID::MUON)) {
// const double mT = sqrt(2*t.pT()*ptmiss * (1 - cos(deltaPhi(t, vptmiss))) );
// if (mT > 100*GeV && t.pT() > 5*GeV) vetoEvent;
// }
// _flow.fill(5);
// // Electron cut
// if (!filter_select(isoleps, Cuts::pT > 10*GeV && Cuts::abspid == PID::ELECTRON).empty()) vetoEvent;
// _flow.fill(6);
// // Electron isotrk cut
// for (const Particle& t : filter_select(isochgs, Cuts::abspid == PID::ELECTRON)) {
// const double mT = sqrt(2*t.pT()*ptmiss * (1 - cos(deltaPhi(t, vptmiss))) );
// if (mT > 100*GeV && t.pT() > 5*GeV) vetoEvent;
// }
// _flow.fill(7);
// // Hadron isotrk cut
// for (const Particle& t : filter_select(isochgs, Cuts::abspid != PID::ELECTRON && Cuts::abspid != PID::MUON)) {
// const double mT = sqrt(2*t.pT()*ptmiss * (1 - cos(deltaPhi(t, vptmiss))) );
// if (mT > 100*GeV && t.pT() > 10*GeV) vetoEvent;
// }
_flow.fill(8);
// dPhi(jet,HTmiss) cuts
if (deltaPhi(vhtmiss, isojets[0]) < 0.5) vetoEvent;
_flow.fill(9);
if (deltaPhi(vhtmiss, isojets[1]) < 0.5) vetoEvent;
_flow.fill(10);
if (njets >= 3 && deltaPhi(vhtmiss, isojets[2]) < 0.3) vetoEvent;
_flow.fill(11);
if (njets >= 4 && deltaPhi(vhtmiss, isojets[3]) < 0.3) vetoEvent;
_flow.fill(12);
/////////////////////////////////////
// Find SR index and fill counter
const double w = 1.0;
const int idx_j = binIndex(njets, vector<int>{2,3,5,7,9}, true);
const int idx_b = binIndex(nbjets, vector<int>{0,1,2,3}, true);
int idx_k = -1;
if (inRange(htmiss/GeV, 300, 350)) {
idx_k = ht < 500*GeV ? 1 : ht < 1000*GeV ? 2 : 3;
} else if (inRange(htmiss/GeV, 350, 500) && ht > 350*GeV) {
idx_k = ht < 500*GeV ? 4 : ht < 1000*GeV ? 5 : 6;
} else if (inRange(htmiss/GeV, 500, 750) && ht > 500*GeV) {
idx_k = ht < 1000*GeV ? 7 : 8;
} else if (htmiss/GeV > 750 && ht > 750*GeV) {
idx_k = ht < 1500*GeV ? 9 : 10;
}
// Fill via 3-tuple index
if (idx_j >= 0 && idx_b >= 0 && idx_k >= 0) {
const auto idx = std::make_tuple(idx_j+1,idx_b+1,idx_k);
if (has_key(_counts, idx)) _counts[idx]->fill(w);
}
/////////////////////////////////////
// Aggregate SRs
// Region Njet Nb-jet HT [GeV] HTmiss [GeV] Parton multiplicity Heavy flavor ? ∆m
if (njets >= 2 && nbjets == 0 && ht >= 500*GeV && htmiss >= 500*GeV) _counts_agg[0]->fill(w);
if (njets >= 3 && nbjets == 0 && ht >= 1500*GeV && htmiss >= 750*GeV) _counts_agg[1]->fill(w);
if (njets >= 5 && nbjets == 0 && ht >= 500*GeV && htmiss >= 500*GeV) _counts_agg[2]->fill(w);
if (njets >= 5 && nbjets == 0 && ht >= 1500*GeV && htmiss >= 750*GeV) _counts_agg[3]->fill(w);
if (njets >= 9 && nbjets == 0 && ht >= 1500*GeV && htmiss >= 750*GeV) _counts_agg[4]->fill(w);
if (njets >= 2 && nbjets >= 2 && ht >= 500*GeV && htmiss >= 500*GeV) _counts_agg[5]->fill(w);
if (njets >= 3 && nbjets >= 1 && ht >= 750*GeV && htmiss >= 750*GeV) _counts_agg[6]->fill(w);
if (njets >= 5 && nbjets >= 3 && ht >= 500*GeV && htmiss >= 500*GeV) _counts_agg[7]->fill(w);
if (njets >= 5 && nbjets >= 2 && ht >= 1500*GeV && htmiss >= 750*GeV) _counts_agg[8]->fill(w);
if (njets >= 9 && nbjets >= 3 && ht >= 750*GeV && htmiss >= 750*GeV) _counts_agg[9]->fill(w);
if (njets >= 7 && nbjets >= 1 && ht >= 300*GeV && htmiss >= 300*GeV) _counts_agg[10]->fill(w);
if (njets >= 5 && nbjets >= 1 && ht >= 750*GeV && htmiss >= 750*GeV) _counts_agg[11]->fill(w);
}
/// Normalise histograms etc., after the run
void finalize() {
const double norm = 35.9*crossSection()/femtobarn;
const double sf = norm/sumOfWeights();
for (auto& idx_cptr : _counts)
scale(idx_cptr.second, sf);
for (CounterPtr& cptr : _counts_agg)
scale(cptr, sf);
_flow.scale(sf);
MSG_INFO("CUTFLOWS:\n\n" << _flow);
}
//@}
private:
Cutflow _flow;
map<tuple<int,int,int>, CounterPtr> _counts;
CounterPtr _counts_agg[12];
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(CMS_2017_I1594909);
}
|