Rivet Analyses Reference

CMS_2018_I1643640

Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $\sqrt{s}$ = 13 TeV
Experiment: CMS (LHC)
Inspire ID: 1643640
Status: VALIDATED
Authors:
  • cms-pag-conveners-smp@cern.ch
  • Hannes Jung
  • Paolo Gunnellini
  • Panos Kokkas
References:
  • 10.1140/epjc/s10052-018-6033-4
  • arxiv:1712.05471
  • CMS-SMP-16-014
Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • QCD at $\sqrt{s} = 13 \text{TeV}$

Azimuthal correlations between the two jets with the largest transverse momenta $p_T$ in inclusive 2-, 3-, and 4-jet events are presented for several regions of the leading jet $p_T$ up to 4 TeV. For 3- and 4-jet scenarios, measurements of the minimum azimuthal angles between any two of the three or four leading $p_T$ jets are also presented. The analysis is based on data from proton-proton collisions collected by the CMS Collaboration at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Calculations based on leading-order matrix elements supplemented with parton showering and hadronization do not fully describe the data, so next-to-leading-order calculations matched with parton shower and hadronization models are needed to better describe the measured distributions. Furthermore, we show that azimuthal jet correlations are sensitive to details of the parton showering, hadronization, and multiparton interactions. A next-to-leading-order calculation matched with parton showers in the MC\@NLO method, as implemented in HERWIG 7, gives a better overall description of the measurements than the POWHEG method.

Source code: CMS_2018_I1643640.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Tools/BinnedHistogram.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"

namespace Rivet {


  /// CMS Azimuthal corellations at 13 TeV
  class CMS_2018_I1643640 : public Analysis {
  public:

    RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2018_I1643640);

    void init() {
      FinalState fs;
      FastJets akt(fs, FastJets::ANTIKT, 0.4);
      declare(akt, "antikT");

      Histo1DPtr tmp;

      _h_deltaPhi_2J_phi12.add( 200.,  300., book(tmp, 1, 1, 1));
      _h_deltaPhi_2J_phi12.add( 300.,  400., book(tmp, 2, 1, 1));
      _h_deltaPhi_2J_phi12.add( 400.,  500., book(tmp, 3, 1, 1));
      _h_deltaPhi_2J_phi12.add( 500.,  600., book(tmp, 4, 1, 1));
      _h_deltaPhi_2J_phi12.add( 600.,  700., book(tmp, 5, 1, 1));
      _h_deltaPhi_2J_phi12.add( 700.,  800., book(tmp, 6, 1, 1));
      _h_deltaPhi_2J_phi12.add( 800.,  1000., book(tmp, 7, 1, 1));
      _h_deltaPhi_2J_phi12.add( 1000., 1200., book(tmp, 8, 1, 1));
      _h_deltaPhi_2J_phi12.add( 1200., 7000., book(tmp, 9, 1, 1));

      _h_deltaPhi_3J_phi12.add( 200.,  300., book(tmp, 10, 1, 1));
      _h_deltaPhi_3J_phi12.add( 300.,  400., book(tmp, 11, 1, 1));
      _h_deltaPhi_3J_phi12.add( 400.,  500., book(tmp, 12, 1, 1));
      _h_deltaPhi_3J_phi12.add( 500.,  600., book(tmp, 13, 1, 1));
      _h_deltaPhi_3J_phi12.add( 600.,  700., book(tmp, 14, 1, 1));
      _h_deltaPhi_3J_phi12.add( 700.,  800., book(tmp, 15, 1, 1));
      _h_deltaPhi_3J_phi12.add( 800.,  1000., book(tmp, 16, 1, 1));
      _h_deltaPhi_3J_phi12.add( 1000., 7000., book(tmp, 17, 1, 1));

      _h_deltaPhi_4J_phi12.add( 200.,  300., book(tmp, 18, 1, 1));
      _h_deltaPhi_4J_phi12.add( 300.,  400., book(tmp, 19, 1, 1));
      _h_deltaPhi_4J_phi12.add( 400.,  500., book(tmp, 20, 1, 1));
      _h_deltaPhi_4J_phi12.add( 500.,  600., book(tmp, 21, 1, 1));
      _h_deltaPhi_4J_phi12.add( 600.,  700., book(tmp, 22, 1, 1));
      _h_deltaPhi_4J_phi12.add( 700.,  800., book(tmp, 23, 1, 1));
      _h_deltaPhi_4J_phi12.add( 800.,  1000., book(tmp, 24, 1, 1));
      _h_deltaPhi_4J_phi12.add( 1000., 7000., book(tmp, 25, 1, 1));

      _h_deltaPhi_3J_phimin2J.add( 200.,  300., book(tmp, 26, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 300.,  400., book(tmp, 27, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 400.,  500., book(tmp, 28, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 500.,  600., book(tmp, 29, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 600.,  700., book(tmp, 30, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 700.,  800., book(tmp, 31, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 800.,  1000., book(tmp, 32, 1, 1));
      _h_deltaPhi_3J_phimin2J.add( 1000., 7000., book(tmp, 33, 1, 1));

      _h_deltaPhi_4J_phimin2J.add( 200.,  300., book(tmp, 34, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 300.,  400., book(tmp, 35, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 400.,  500., book(tmp, 36, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 500.,  600., book(tmp, 37, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 600.,  700., book(tmp, 38, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 700.,  800., book(tmp, 39, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 800.,  1000., book(tmp, 40, 1, 1));
      _h_deltaPhi_4J_phimin2J.add( 1000., 7000., book(tmp, 41, 1, 1));

    }


    void analyze(const Event & event) {
      const Jets& jets = apply<JetAlg>(event, "antikT").jetsByPt();

      // 2 jet case and Delta_phi12
      if( jets.size() >= 2 ) {
        if ( (jets[0].pT() >= 200.*GeV)  &&  (jets[1].pT() >= 100.*GeV) ) {
          if ( (fabs(jets[0].rap()) <= 2.5)  &&  (fabs(jets[1].rap()) <= 2.5) ) {
            double dphi = deltaPhi(jets[0].phi(), jets[1].phi());
            _h_deltaPhi_2J_phi12.fill(jets[0].pT(), dphi, 1.0);
          }
        }
      }

      // 3 jet case and Delta_phi12
      if ( jets.size() >= 3 ) {
        if ( (jets[0].pT() >= 200.*GeV)  &&  (jets[1].pT() >= 100.*GeV)  && (jets[2].pT() >= 100.*GeV) ) {
          if ( (fabs(jets[0].rap()) <= 2.5)  &&  (fabs(jets[1].rap()) <= 2.5) &&  (fabs(jets[2].rap()) <= 2.5)) {
            double dphi = deltaPhi(jets[0].phi(), jets[1].phi());
            _h_deltaPhi_3J_phi12.fill(jets[0].pT(), dphi, 1.0);
          }
        }
      }

      // 4 jet case and Delta_phi12
      if ( jets.size() >= 4 ) {
        if ( (jets[0].pT() >= 200.*GeV)  &&  (jets[1].pT() >= 100.*GeV)  && (jets[2].pT() >= 100.*GeV)   && (jets[3].pT() >= 100.*GeV)) {
          if ( (fabs(jets[0].rap()) <= 2.5)  &&  (fabs(jets[1].rap()) <= 2.5) &&  (fabs(jets[2].rap()) <= 2.5) &&  (fabs(jets[3].rap()) <= 2.5)) {
            double dphi = deltaPhi(jets[0].phi(), jets[1].phi());
            _h_deltaPhi_4J_phi12.fill(jets[0].pT(), dphi, 1.0);
          }
        }
      }

      // 3 jet case and Delta_Phi_min2j
      if ( jets.size() >= 3 ) {
        if ( (jets[0].pT() >= 200.*GeV)  &&  (jets[1].pT() >= 100.*GeV)  && (jets[2].pT() >= 100.*GeV) ) {
          if ( (fabs(jets[0].rap()) <= 2.5)  &&  (fabs(jets[1].rap()) <= 2.5) &&  (fabs(jets[2].rap()) <= 2.5)) {
            double dphi01 = deltaPhi(jets[0].phi(), jets[1].phi());
            if (dphi01 >= PI/2. ){
              double dphi02 = deltaPhi(jets[0].phi(), jets[2].phi());
              double dphi12 = deltaPhi(jets[1].phi(), jets[2].phi());
              // evaluate DPhi2Jmin
              vector<double> Dphis2J{dphi01,dphi02,dphi12};
              double DPhi2Jmin = min(Dphis2J);
              // double Dphis2J[3] = {dphi01,dphi02,dphi12};
              // double DPhi2Jmin = Dphis2J[0];
              // for (int gg=1; gg<3; ++gg) { if (DPhi2Jmin>Dphis2J[gg]) DPhi2Jmin = Dphis2J[gg]; }
              _h_deltaPhi_3J_phimin2J.fill(jets[0].pT(), DPhi2Jmin, 1.0);
            }
          }
        }
      }

      // 4 jet case and Delta_Phi_min2j
      if ( jets.size() >= 4 ) {
        if ( (jets[0].pT() >= 200.*GeV)  &&  (jets[1].pT() >= 100.*GeV)  && (jets[2].pT() >= 100.*GeV)   && (jets[3].pT() >= 100.*GeV)) {
          if ( (fabs(jets[0].rap()) <= 2.5)  &&  (fabs(jets[1].rap()) <= 2.5) &&  (fabs(jets[2].rap()) <= 2.5) &&  (fabs(jets[3].rap()) <= 2.5)) {
            double dphi01 = deltaPhi(jets[0].phi(), jets[1].phi());
            if (dphi01 >= PI/2.) {
              double dphi02 = deltaPhi(jets[0].phi(), jets[2].phi());
              double dphi03 = deltaPhi(jets[0].phi(), jets[3].phi());
              double dphi12 = deltaPhi(jets[1].phi(), jets[2].phi());
              double dphi13 = deltaPhi(jets[1].phi(), jets[3].phi());
              double dphi23 = deltaPhi(jets[2].phi(), jets[3].phi());
              /// evaluate DPhi2Jmin
              // double Dphis2J[6]={dphi01,dphi02,dphi03,dphi12,dphi13,dphi23};
              // double DPhi2Jmin=Dphis2J[0];
              // for(int gg=1; gg<6; ++gg){ if(DPhi2Jmin>Dphis2J[gg]){DPhi2Jmin=Dphis2J[gg];} }
              vector<double> Dphis2J{dphi01,dphi02,dphi03,dphi12,dphi13,dphi23};
              double DPhi2Jmin = min(Dphis2J);
              _h_deltaPhi_4J_phimin2J.fill(jets[0].pT(), DPhi2Jmin, 1.0);
            }
          }
        }
      }
    }  // end analyze


    void finalize() {
      for (Histo1DPtr histo : _h_deltaPhi_2J_phi12.histos()) normalize(histo);
      for (Histo1DPtr histo : _h_deltaPhi_3J_phi12.histos()) normalize(histo);
      for (Histo1DPtr histo : _h_deltaPhi_4J_phi12.histos()) normalize(histo);
      for (Histo1DPtr histo : _h_deltaPhi_3J_phimin2J.histos()) normalize(histo);
      for (Histo1DPtr histo : _h_deltaPhi_4J_phimin2J.histos()) normalize(histo);
    }


  private:

    BinnedHistogram _h_deltaPhi_2J_phi12;
    BinnedHistogram _h_deltaPhi_3J_phi12;
    BinnedHistogram _h_deltaPhi_4J_phi12;
    BinnedHistogram _h_deltaPhi_3J_phimin2J;
    BinnedHistogram _h_deltaPhi_4J_phimin2J;

  };


  RIVET_DECLARE_PLUGIN(CMS_2018_I1643640);

}